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Standard Test Method for
Dynamic Young’s Modulus, Shear Modulus, and Poisson’s
Ratio for Advanced Ceramics by Sonic Resonance 1

This standard is issued under the fixed designation C 1198; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers the determination of the dy-
namic elastic properties of advanced ceramics. Specimens of
these materials possess specific mechanical resonant frequen-
cies that are determined by the elastic modulus, mass, and
geometry of the test specimen. Therefore, the dynamic elastic
properties of a material can be computed if the geometry, mass,
and mechanical resonant frequencies of a suitable test speci-
men of that material can be measured. Dynamic Young’s
modulus is determined using the resonant frequency in the
flexural mode of vibration. The dynamic shear modulus, or
modulus of rigidity, is found using torsional resonant vibra-
tions. Dynamic Young’s modulus and dynamic shear modulus
are used to compute Poisson’s ratio.

1.2 This test method is specifically appropriate for advanced
ceramics that are elastic, homogeneous, and isotropic(1).2

Advanced ceramics of a composite character (particulate,
whisker, or fiber reinforced) may be tested by this test method
with the understanding that the character (volume fraction,
size, morphology, distribution, orientation, elastic properties,
and interfacial bonding) of the reinforcement in the test
specimen will have a direct effect on the elastic properties.
These reinforcement effects must be considered in interpreting
the test results for composites. This test method is not
satisfactory for specimens that have cracks or voids that are
major discontinuities in the specimen. Neither is the test
method satisfactory when these materials cannot be fabricated
in a uniform rectangular or circular cross section.

1.3 A high-temperature furnace and cryogenic cabinet are
described for measuring the dynamic elastic moduli as a
function of temperature from −195 to 1200°C.

1.4 Modification of this test method for use in quality
control is possible. A range of acceptable resonant frequencies
is determined for a specimen with a particular geometry and
mass. Any specimen with a frequency response falling outside
this frequency range is rejected. The actual modulus of each
specimen need not be determined as long as the limits of the

selected frequency range are known to include the resonant
frequency that the specimen must possess if its geometry and
mass are within specified tolerances.

1.5 The procedures in this test method are, where possible,
consistent with the procedures of Test Methods C 623, C 747,
and C 848. The tables of these test methods have been replaced
by the actual formulas from the original references. With the
advent of computers and sophisticated hand calculators, the
actual formulas can be easily used and provide greater accu-
racy than factor tables.

1.6 The values stated in SI units are to be regarded as the
standard. The values given in parentheses are for information
only.

1.7 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:
C 372 Test Method for Linear Thermal Expansion of Por-

celain Enamel and Glaze Frits and Fired Ceramic Whitew-
are Products by the Dilatomer Method3

C 623 Test Method for Young’s Modulus, Shear Modulus,
and Poisson’s Ratio for Glass and Glass-Ceramics by
Resonance3

C 747 Test Method for Moduli of Elasticity and Fundamen-
tal Frequencies of Carbon and Graphite Materials by Sonic
Resonance4

C 848 Test Method for Young’s Modulus, Shear Modulus,
and Poisson’s Ratio for Ceramic Whitewares by Reso-
nance3

C 1145 Terminology of Advanced Ceramics4

C 1161 Test Method for Flexural Strength of Advanced
Ceramics at Ambient Temperatures4

D 4092 Terminology Relating to Dynamic Mechanical
Measurements on Plastics5

3. Terminology

3.1 Definitions:

1 This test method is under the jurisdiction of ASTM Committee C28 on
Advanced Ceramics and is the direct responsibility of Subcommittee C28.01 on
Properties and Performance.

Current edition approved April 10, 2001. Published June 2001. Originally
published as C 1198 – 91. Last previous edition C 1198 – 96.

2 The boldface numbers given in parentheses refer to a list of references at the
end of the text.

3 Annual Book of ASTM Standards, Vol 15.02.
4 Annual Book of ASTM Standards, Vol 15.01.
5 Annual Book of ASTM Standards, Vol 08.02.
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3.1.1 advanced ceramic, n—a highly engineered, high per-
formance, predominately nonmetallic, inorganic, ceramic ma-
terial having specific functional attributes.(C 1145)

3.1.2 dynamic mechanical measurement, n—a technique in
which either the modulus or damping, or both, of a substance
under oscillatory load or displacement is measured as a
function of temperature, frequency, or time, or combination
thereof.(D 4092)

3.1.3 elastic limit [FL−2], n—the greatest stress that a
material is capable of sustaining without permanent strain
remaining upon complete release of the stress.

3.1.4 elastic modulus[FL−2], n—the ratio of stress to strain
below the proportional limit.

3.1.5 Poisson’s ratio(µ) [nd], n—the absolute value of the
ratio of transverse strain to the corresponding axial strain
resulting from uniformly distributed axial stress below the
proportional limit of the material.

3.1.6 Discussion—In isotropic materials Young’s modulus
(E), shear modulus (G), and Poisson’s ratio (µ) are related by
the following equation:

µ 5 ~ E/2G ! 2 1 (1)

3.1.7 proportional limit [FL−2], n—the greatest stress that a
material is capable of sustaining without deviation from
proportionality of stress to strain (Hooke’s law).

3.1.8 shear modulus(G) [FL−2], n—the elastic modulus in
shear or torsion. Also calledmodulus of rigidityor torsional
modulus.

3.1.9 Young’s modulus( E) [FL−2], n—the elastic modulus
in tension or compression.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 anti-nodes, n—an unconstrained slender rod or bar in

resonance contains two or more locations that have local
maximum displacements, called anti-nodes. For the fundamen-
tal flexure resonance, the anti-nodes are located at the two ends
and the center of the specimen.

3.2.2 elastic, adj—the property of a material such that an
application of stress within the elastic limit of that material
making up the body being stressed will cause an instantaneous
and uniform deformation, that will be eliminated upon removal
of the stress, with the body returning instantly to its original
size and shape without energy loss. Most advanced ceramics
conform to this definition well enough to make this resonance
test valid.

3.2.3 flexural vibrations, n—the vibrations that occur when
the oscillations in a slender rod or bar are in the plane normal
to the length dimension.

3.2.4 homogeneous, adj—the condition of a specimen such
that the composition and density are uniform, such that any
smaller specimen taken from the original is representative of
the whole. Practically, as long as the geometrical dimensions of
the test specimen are large with respect to the size of individual
grains, crystals, or components, the body can be considered
homogeneous.

3.2.5 isotropic, adj—the condition of a specimen such that
the values of the elastic properties are the same in all directions
in the material. Advanced ceramics are considered isotropic on
a macroscopic scale, if they are homogeneous and there is a

random distribution and orientation of phases, crystallites, and
components.

3.2.6 nodes, n—a slender rod or bar in resonance contains
one or more locations having a constant zero displacement,
called nodes. For the fundamental flexural resonance, the nodes
are located at 0.224L from each end, whereL is the length of
the specimen.

3.2.7 resonance, n—a slender rod or bar driven into one of
the modes of vibration described in 3.2.3 or 3.2.9 is said to be
in resonance when the imposed frequency is such that the
resultant displacements for a given amount of driving force are
at a maximum. The resonant frequencies are natural vibration
frequencies that are determined by the elastic modulus, mass,
and dimensions of the test specimen.

3.2.8 slender rod or bar, n—in dynamic elastic property
testing, a specimen whose ratio of length to minimum cross-
sectional dimension is at least five and preferably in the range
of 20 to 25.

3.2.9 torsional vibrations, n— the vibrations that occur
when the oscillations in each cross-sectional plane of a slender
rod or bar are such that the plane twists around the length
dimension axis.

4. Summary of Test Method

4.1 This test method measures the resonant frequencies of
test specimens of suitable geometry by exciting them at
continuously variable frequencies. Mechanical excitation of
the bars is provided through the use of a transducer that
transforms a cyclic electrical signal into a cyclic mechanical
force on the specimen. A second transducer senses the resulting
mechanical vibrations of the specimen and transforms them
into an electrical signal. The amplitude and frequency of the
signal are measured by an oscilloscope or other means to detect
resonance. The resonant frequencies, dimensions, and mass of
the specimen are used to calculate dynamic Young’s modulus
and dynamic shear modulus.

5. Significance and Use

5.1 This test method may be used for material development,
characterization, design data generation, and quality control
purposes. It is specifically appropriate for determining the
modulus of advanced ceramics that are elastic, homogeneous,
and isotropic.

5.1.1 This test method is nondestructive in nature. Only
minute stresses are applied to the specimen, thus minimizing
the possibility of fracture.

5.1.2 The period of time during which measurement stress
is applied and removed is of the order of hundreds of
microseconds. With this test method it is feasible to perform
measurements at high temperatures, where delayed elastic and
creep effects would invalidate modulus measurements calcu-
lated from static loading.

5.2 This test method has advantages in certain respects over
the use of static loading systems for measuring moduli in
advanced ceramics. It is nondestructive in nature and can be
used for specimens prepared for other tests. Specimens are
subjected to minute strains; hence, the moduli are measured at
or near the origin of the stress-strain curve with the minimum
possibility of fracture. The period of time during which
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measurement stress is applied and removed is of the order of
hundreds of microseconds. With this test method it is feasible
to perform measurements at high temperatures, where delayed
elastic and creep effects would invalidate modulus measure-
ments calculated from static loading.

6. Interferences

6.1 The relationships between resonant frequency and dy-
namic modulus presented herein are specifically applicable to
homogeneous, elastic, isotropic materials.

6.1.1 This test method of determining the moduli is appli-
cable to composite ceramics and inhomogeneous materials
only with careful consideration of the effect of inhomogeneities
and anisotropy. The character (volume fraction, size, morphol-
ogy, distribution, orientation, elastic properties, and interfacial
bonding) of the reinforcement/inhomogeneities in the speci-
mens will have a direct effect on the elastic properties of the
specimen as a whole. These effects must be considered in
interpreting the test results for composites and inhomogeneous
materials.

6.1.2 If specific surface treatments (coatings, machining,
grinding, etching, etc.) change the elastic properties of the
near-surface material, there will be accentuated effects on the
properties measured by this flexural method, as compared to
static/bulk measurements by tensile or compression testing.

6.1.3 This test method is not satisfactory for specimens that
have major discontinuities, such as large cracks (internal or
surface) or voids.

6.2 This test method for determining moduli is limited to
specimens with regular geometries (rectangular parallelepiped
and cylinders) for which analytical equations are available to
relate geometry, mass, and modulus to the resonant vibration
frequencies. This test method is not appropriate for determin-
ing the elastic properties of materials which cannot be fabri-
cated into such geometries.

6.2.1 The analytical equations assume parallel/concentric
dimensions for the regular geometries of the specimen. Devia-
tions from the specified tolerances for the dimensions of the
specimens will change the resonant frequencies and introduce
error into the calculations.

6.2.2 Edge treatments such as chamfers or radii are not
considered in the analytical equations. Edge chamfers on
flexure bars prepared according to Test Method C 1161 will
change the resonant frequency of the test bars and introduce
error into the calculations of the dynamic modulus. It is
recommended that specimens for this test not have chamfered
or rounded edges. Alternately, if narrow rectangular specimens
with chamfers or edge radii are tested, then the procedures in
Annex A1 should be used to correct the calculated Young’s
modulus, E.

6.2.3 For specimens with as-fabricated/rough or uneven
surfaces, variations in dimension can have a significant effect
in the calculations. For example, in the calculation of the
dynamic modulus, the modulus value is inversely proportional
to the cube of the thickness. Uniform specimen dimensions and
precise measurements are essential for accurate results.

7. Apparatus

7.1 The test apparatus is shown in Fig. 1. It consists of a

variable-frequency audio oscillator, used to generate a sinusoi-
dal voltage, and a power amplifier and suitable transducer to
convert the electrical signal to a mechanical driving vibration.
A frequency meter (preferably digital) monitors the audio
oscillator output to provide an accurate frequency determina-
tion. A suitable suspension-coupling system supports the test
specimen. Another transducer acts to detect mechanical vibra-
tion in the specimen and to convert it into an electrical signal
that is passed through an amplifier and displayed on an
indicating meter. The meter may be a voltmeter, microamme-
ter, or oscilloscope. An oscilloscope is recommended because
it enables the operator to positively identify resonances,
including higher order harmonics, by Lissajous figure analysis.
If a Lissajous figure is desired, the output of the oscillator is
also coupled to the horizontal plates of the oscilloscope. If
temperature-dependent data are desired, a suitable furnace or
cryogenic chamber is used. Details of the equipment are as
follows:

7.2 Audio Oscillator, having a continuously variable fre-
quency output from about 100 Hz to at least 30 kHz. Frequency
drift shall not exceed 1 Hz/min for any given setting.

7.3 Audio Amplifier, having a power output sufficient to
ensure that the type of transducer used can excite any specimen
the mass of which falls within a specified range.

7.4 Transducers—Two are required; one used as a driver
may be a speaker of the tweeter type or a magnetic cutting head
or other similar device depending on the type of coupling
chosen for use between the transducer and the specimen. The
other transducer, used as a detector, may be a crystal or
magnetic reluctance type of photograph cartridge. A capacitive
pickup may be used if desired. An electromagnetic coupling
system with an attached metal foil may also be used, with due
consideration for effects of the foil on the natural vibration of
the test bar. The frequency response of the transducer across
the frequency range of interest shall have at least a 6.5 kHz
bandwidth before −3 dB power loss occurs.

7.5 Power Amplifier, in the detector circuit shall be imped-
ance matched with the type of detector transducer selected and
shall serve as a prescope amplifier.

7.6 Cathode-Ray Oscilloscope, any model suitable for gen-
eral laboratory work.

7.7 Frequency Counter, preferably digital, shall be able to

FIG. 1 Block Diagram of a Typical Test Apparatus
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measure frequencies to within6 1 Hz.
7.8 Furnace—If data at elevated temperature are desired, a

furnace shall be used that is capable of controlled heating and
cooling. It shall have a specimen zone large enough for the
specimen to be uniform in temperature within6 5°C along its
length through the range of temperatures encountered in
testing. It is recommended that an independent thermocouple
be placed in close proximity to (within 5 mm), but not
touching, the center of the specimen to accurately measure
temperature during heating and cooling.

7.9 Cryogenic Chamber—For data at cryogenic tempera-
tures, any chamber shall suffice that shall be capable of
controlled heating/cooling, frost-free and uniform in tempera-
ture within 6 5°C over the length of the specimen at any
selected temperature. A suitable cryogenic chamber is shown in
Fig. 2 (2). It is recommended that an independent thermo-
couple be placed in close proximity to (within 5 mm), but not
touching, the center of the specimen to accurately measure
temperature during heating and cooling.

7.10 Specimen Suspension—Any method of specimen sus-
pension shall be used that is adequate for the temperatures
encountered in testing and that allows the specimen to vibrate
without significant restriction. Thread suspension is the system
of choice for cryogenic and high-temperature testing. (See Fig.
1 and Fig. 3.) Common cotton thread, silica-glass fiber thread,
oxidation-resistant nickel (or platinum) alloy wire, or platinum
wire may be used. If metal wire suspension is used in the
furnace, coupling characteristics will be improved if, outside
the temperature zone, the wire is coupled to cotton thread, and
the thread is coupled to the transducer. The specimen should be
initially suspended at distances of approximately 0.1L from
each end. The specimen should not be suspended at its
fundamental flexural node locations (0.224L from each end).
The suspension point distances can be adjusted experimentally
to maximize the vibrational deflection and resulting signal. For

torsional vibration, the axes of suspension have to be off-center
from the longitudinal axis of the specimen (shown in Fig. 3).

7.11 Specimen Supports—If the specimen is supported on
direct contact supports, the supports shall permit the specimen
to oscillate without significant restriction in the desired mode.
This is accomplished for flexural modes by supporting the
specimen at its transverse fundamental node locations (0.224L
from each end). In torsional modes the specimen should be
supported at its center point. The supports should have minimal
area in contact with the specimen and shall be cork, rubber, or
similar material. In order to properly identify resonant frequen-
cies, the transducers should be movable along the total speci-
men length and width. (See Fig. 4.) The transducer contact
pressure should be consistent with good response and minimal
interference with the free vibration of the specimen.

8. Test Specimen

8.1 Prepare the specimens so that they are either rectangular
or circular in cross section. Either geometry can be used to
measure both dynamic Young’s modulus and dynamic shear
modulus. However, experimental difficulties in obtaining tor-
sional resonant frequencies for a cylindrical specimen usually
preclude its use in determining shear modulus, although the
equations for computing shear modulus with a cylindrical
specimen are both simpler and more accurate than those used
with a rectangular bar.

1—Cylindrical glass jar
2—Glass wool
3—Plastic foam
4—Vacuum jar
5—Heater disk
6—Copper plate
7—Thermocouple
8—Sample
9—Suspension wires

10—Fill port for liquid

FIG. 2 Detail Drawing of a Typical Cryogenic Chamber

FIG. 3 Specimen Positioned for Measurement of Flexural and
Torsional Resonant Frequencies Using Thread or Wire

Suspension

FIG. 4 Specimen Positioned for Measurement of Flexural and
Torsional Resonant Frequencies Using Direct Support and Direct

Contact Transducers
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8.2 Resonant frequencies for a given specimen are functions
of the bar dimensions as well as its mass and moduli; therefore,
dimensions should be selected with this relationship in mind.
Make selection of size so that, for an estimated modulus, the
resonant frequencies measured will fall within the range of
frequency response of the transducers used. A slender rod with
a ratio of length to minimum cross-sectional dimension greater
than ten and approximately 25 is preferred for ease in calcu-
lation. For shear modulus measurements of rectangular bars, a
ratio of width to thickness of five is recommended for
minimizing experimental difficulties. Suitable rectangular
specimen dimensions are: 75 mm in length, 15 mm in width,
and 3 mm in thickness. Suitable cylindrical rod dimensions are:
125 mm in length and 6 mm in diameter.

8.2.1 These specimen sizes should produce a fundamental
flexural resonant frequency in the range from 1000 to 10 000
Hz and a fundamental torsional resonant frequency in the range
from 10 000 to 30 000 Hz. (Representative values of Young’s
modulus are 410 GPa (593 106 psi) for alumina (99 %), 200
GPa (293 106 psi) for silicon nitride, and 530 GPa (773 106

psi) for titanium diboride.) Specimens shall have a minimum
mass of 5 g toavoid coupling effects; any size of specimen that
has a suitable length-to-cross section ratio in terms of fre-
quency response and meets the mass minimum may be used.
Maximum specimen size and mass are determined primarily by
the power of the test system and physical space capabilities.

8.3 Finish the surfaces of the specimen using a fine grind
(400 grit or finer). All surfaces on the rectangular specimen
shall be flat. Opposite surfaces across the length and width
shall be parallel within 0.01 mm or6 0.1 % whichever is
greater. Opposite surfaces across the thickness shall be parallel
within 0.002 mm or 6 0.1 % whichever is greater. The
cylindrical specimen shall be round and constant in diameter
within 0.002 mm or6 0.1 % whichever is greater.

8.4 Dry the specimen in air at 120°C in a drying oven until
the mass is constant (less than 0.1 % or 10 mg difference in
mass with 30 min of additional drying).

9. Procedure

9.1 Procedure A—Room-Temperature Testing:
9.1.1 Switch on all electrical equipment and allow to

stabilize in accordance with the manufacturer’s recommenda-
tions. Suspend or support the specimen properly (see Fig. 3 and
Fig. 4). Activate the equipment so that power adequate to
excite the specimen is delivered to the driving transducer. Set
the gain of the detector circuit high enough to detect vibration
in the specimen and to display it on the oscilloscope screen
with sufficient amplitude to measure accurately the frequency
at which the signal amplitude is maximized. Adjust the
oscilloscope so that a sharply defined horizontal baseline exists
when the specimen is not excited. Scan frequencies with the
audio oscillator until specimen resonance is indicated by a
sinusoidal pattern of maximum amplitude on the oscilloscope
or by a single closed loop Lissajous pattern. (It is recom-
mended that the frequency scan start at a low frequency and
then increase.) To verify that the frequency is fundamental and
not an overtone, either the node/anti-node locations or one or
more overtones should be identified (see Note 1). If a deter-
mination of the shear modulus is made, offset the coupling to

the transducers so that the torsional mode of vibration may be
induced and detected. (See Fig. 3 and Fig. 4.)

NOTE 1—The proper identification of the fundamental flexural mode is
important as spurious frequencies inherent in the system may interfere,
especially when greater excitation power and detection sensitivity are
required for work with a specimen that has a poor response. The location
of the nodes for the fundamental and the first four overtones are indicated
in Fig. 5. One method to locate the nodes on the specimen is to move the
detector along the length of the specimen; a node is indicated when the
output amplitude goes to zero. An anti-node is indicated when the output
amplitude reaches a local maximum. Another node location method (used
often with string suspensions) is to lay a thin rod across the specimen at
a presumed node or anti-node location. If the output amplitude is not
affected, then the rod is on a node; if the output amplitude goes to zero,
then the location is an anti-node. When several resonant flexural frequen-
cies have been identified, the lowest frequency can be verified as the
fundamental, if the numerical ratios of the first three overtone frequencies
to the lowest frequency are: 2.7, 5.4, and 8.9. Note that these ratios are for
a Bernoulli-Euler (simple) beam under ideal conditions. Typically the
ratios will be slightly lower.

9.1.2 Find and verify (see Note 2) the fundamental resonant
frequency in the torsion mode. The dimensions and mass of the
specimen may be measured before or after the test. Measure
the length and width dimensions within6 0.01 mm or6 0.1 %
(whichever is greater) at three locations and determine the
average for each dimension. Measure the thickness/diameter
within 6 0.002 mm or6 0.1 % (whichever is greater) at three
locations and determine the average of the three measurements.
Measure the mass within6 10 mg or6 0.1 % (whichever is
greater).

NOTE 2—Identification of the fundamental torsional mode is based on
the same approaches used in identifying the flexural modes; node
identification or frequency ratios, or both. Fig. 5 locates the node positions
for torsional vibrations. The ratios of the first three torsional overtones to
the fundamental torsional frequency are 2, 3, and 4.

9.2 Procedure B—Elevated-Temperature Testing—
Determine the mass, dimensions, and resonant frequencies at
room temperature in air as outlined in 9.1. Place the specimen
in the furnace and adjust the driver-detector system so that all
the frequencies to be measured can be detected without further
adjustment. Determine the resonant frequencies at room tem-
perature in the furnace cavity with the furnace doors closed,
etc., as will be the case at elevated temperatures. Heat the
furnace at a controlled rate that does not exceed 150°C/h. Take
data at 25° intervals or at 15 min intervals as dictated by

FIG. 5 Dynamic Modulus Resonant Modes and Nodal Locations
Tracking Guide Template
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heating rate and specimen composition. Follow the change in
resonant frequencies with time and temperature closely to
avoid losing the identity of each frequency. (The overtones in
flexure and the fundamental in torsion may be difficult to
differentiate if not followed closely; spurious frequencies
inherent in the system may also appear at temperatures above
600°C using certain types of suspensions, particularly wire.) If
desired, data may also be taken on cooling. It must be
remembered, however, that high temperatures may alter the
specimen either reversibly or permanently (for example, phase
change, devitrification, or microcracking). Such potential
changes should be considered in planning the range of test
temperatures and in interpreting test results as a function of
temperature. Dimensions and mass of the specimen should be
measured both before and after the test to check for permanent
thermal effects. Measurements should be made to the precision
described in 9.1.

9.3 Procedure C—Cryogenic Testing—Determine the mass,
dimensions, and resonant frequencies in air at room tempera-
ture, as outlined in 9.1. Measure the resonant frequencies at
room temperature in the cryogenic chamber. Take the chamber
to the minimum temperature desired (see Note 3), monitoring
frequencies as the chamber is cooled. Allow the specimen to
stabilize at minimum temperature for at least 15 min. Heating
rate should not exceed 50°C/h and data may be taken at
intervals of 10 min or 15°C or as desired. Dimensions and mass
of the specimen should be measured both before and after the
test to check for permanent thermal effects. Measurements
should be made to the precision described in 9.1.

NOTE 3—Caution: Take care to remove water vapor from the chamber
by flushing with dry nitrogen gas prior to chilling so that frost deposits on
the specimen do not cause anomalous results.

10. Calculation

10.1 Dynamic Young’s Modulus(1,3)—For the fundamental
in flexure of a rectangular bar calculate as follows(3):

E 5 0.9465~m ff
2 /b !~L3/ t3!T1 (2)

where:
E = Young’s modulus, Pa,
m = mass of the bar, g, (see Note 4),
b = width of the bar, mm, (see Note 4),
L = length of the bar, mm, (see Note 4),
t = thickness of the bar, mm, (see Note 4),
ff = fundamental resonant frequency of bar in flexure, Hz,

and
T 1 = correction factor for fundamental flexural mode to

account for finite thickness of bar, Poisson’s ratio,
etc.

and:

T 1 5 1 1 6.585~1 1 0.0752 µ

1 0.8109 µ2!~t/L!2 2 0.868~t/L!4

2 F 8.340~1 1 0.2023 µ1 2.173 µ2!~t/L! 4

1.0001 6.338~1 1 0.1408 µ1 1.536 µ2!~t/L! 2G (3)

where:
µ = Poisson’s ratio.

NOTE 4—In the modulus equations the mass and length terms are given
in units of grams and millimetres. However, the defined equations can also
be used with mass and length terms in units of kilograms and metres with
no changes in terms or exponents.

10.1.1 If L/t $ 20, theT1 can be simplified to:

T1 5 @1.0001 6.585~t/L!2# (4)

andE can be calculated directly.
10.1.2 IfL/t < 20 and Poisson’s ratio is known, thenT1 can

be calculated directly from Eq. 3 and then used to calculateE.
10.1.3 IfL/t < 20 and Poisson’s ratio is not known, then an

initial Poisson’s ratio must be assumed to start the computa-
tions. An iterative process is then used to determine a value of
Poisson’s ratio, based on experimental Young’s modulus and
shear modulus. The iterative process is flowcharted in Fig. 6
and described in 10.1.3.1 through 10.1.3.5 below.

10.1.3.1 Determine the fundamental flexural and torsional
resonant frequency of the rectangular test specimen, as de-
scribed in 9.1. Using Eq 8 and Eq 9, calculate the dynamic
shear modulus of the test specimen for the fundamental
torsional resonant frequency and the dimensions and mass of
the specimen.

10.1.3.2 Using Eq 2 and Eqs. 3, calculate the dynamic
Young’s modulus of the rectangular test specimen from the
fundamental flexural resonant frequency, the dimensions, and
mass of the specimen and the initial/iterative Poisson’s ratio.
Care must be exercised in using consistent units for all the
parameters throughout the computations.

10.1.3.3 The dynamic shear modulus and Young’s modulus
values calculated in 10.1.3.1 and 10.1.3.2 are substituted into
Eq 12 for Poisson’s ratio satisfying isotropic conditions. A new
value for Poisson’s ratio is calculated for another iteration
starting at 10.1.3.2.

10.1.3.4 The steps in 10.1.3.2 through 10.1.3.3 are repeated
until no significant difference (2 % or less) is observed between
the last iterative value and the final computed value of the
Poisson’s ratio.

FIG. 6 Process Flowchart for Iterative Determination of Poisson’s
Ratio

C 1198

6



10.1.3.5 Self-consistent values for the moduli are thus
obtained.

10.1.3.6 If the rectangular specimen is narrow and the four
long edges of the rectangular bar have been chamfered or
rounded, then the calculated Young’s modulus, E, should be
corrected in accordance with Annex A1.

10.1.4 For the fundamental in flexure of a rod of circular
cross section calculate as follows(3):

E 5 1.6067~L3/D 4! ~m ff
2 ! T 18 (5)

where:
D = diameter of rod, mm, (see Note 4), and
T18 = correction factor for fundamental flexural mode to

account for finite diameter of bar, Poisson’s ratio, etc.

and

T 18 5 1 1 4.939~1 1 0.0752 µ1 0.8109 µ2! ~D/L!2

2 0.4883~D/L!4

2 F 4.691~1 1 0.2023 µ1 2.173 µ2 !~ D/L! 4

1.0001 4.754~1 1 0.1408 µ1 1.536 µ2 !~ D/L! 2G (6)

10.1.4.1 If L/D $ 20, the T18 can be simplified to the
following:

T18 5 @1.0001 4.939~D/L! 2 # (7)

10.1.4.2 IfL/D < 20 and Poisson’s ratio is known, thenT18

can be calculated directly from Eq 6 and then used to calculate
E.

10.1.4.3 IfL/D < 20 and Poisson’s ratio is not known, then
an initial Poisson’s ratio must be assumed to start the compu-
tations. Final values for Poisson’s ratio, the dynamic Young’s
modulus, and dynamic shear modulus are determined, using
the same method described in 10.1.3.1 through 10.1.3.5 and the
modulus equations for circular bars (see Eq 5, Eq 6, and Eq
11).

10.2 Dynamic Shear Modulus(4) :

10.2.1 For the fundamental torsion of a rectangular bar
calculate as follows. See Fig. 7(4):

G 5
4 L m ft

2

b t @ B/~1 1 A!# (8)

where:
G = dynamic shear modulus, Pa,
ft = fundamental resonant frequency of bar in torsion, Hz,
B = b/t 1 t/b

4~t/b! 2 2.52~t/b!2 1 0.21~t/b! 6, and (9)

A = an empirical correction factor dependent on the width-
to-thickness ratio of the test specimen (Ref(5)). This
correction factor has an effect of less than 2 % and can
be omitted, unless accuracies of better than 2 % are
desired. (See Fig. 7 for a plot ofA as a function of the
width-to-thickness ratio.) A rational equation fitted to
the points from Fig. 7 is given in Eq 10.

A =

@0.50622 0.8776 ~b/t! 1 0.3504~b/t!2 2 0.0078~b/t!3 #

@12.03~b/t! 1 9.892~b/t!2 #
(10)

10.2.2 For the fundamental torsion of a cylindrical rod
calculate as follows:

G 5 16m ft
2 ~L/p D 2 ! (11)

10.3 Calculate Poisson’s ratio as follows:

µ 5 ~ E/2G! 2 1 (12)

where:
µ = Poisson’s ratio,
E = Young’s modulus, and
G = shear modulus.

10.4 Calculate moduli at elevated and cryogenic tempera-
tures as follows:

MT 5 Mo@fT/fo#
2 @1/~1 1 a DT!# (13)

where:
M T = modulus at temperatureT (either Young’s modulus,

E, or shear modulus,G),
Mo = modulus at room temperature (either Young’s

modulus,E, or shear modulus,G),
fT = resonant frequency in furnace or cryogenic chamber

at temperatureT,
fo = resonant frequency at room temperature in furnace

or cryogenic chamber,

FIG. 7 Plot of the Shear Modulus Correction Term A
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a = average linear thermal expansion (mm/mm·°C)
from room temperature to test temperature; (the
method in Test Method C 372 is recommended), and

D T = temperature differential in °C between the test
temperatureT and room temperature.

10.5 Use the following stress conversion factor:

1 Pa5 1.4503 1024 psi (14)

11. Report

11.1 Report the following information:
11.1.1 Identification of specific tests performed and appara-

tus used, with a description of any deviations from the
described practice.

11.1.2 Complete description of material(s) tested stating
composition, number of specimens, specimen geometry and
mass, specimen history, and any treatments to which the
specimens have been subjected. Comments on surface finish,
edge conditions, observed changes after cryogenic or high-
temperature testing, etc. shall be included where pertinent.

11.1.3 Name of the person performing the test and date of
the test.

11.1.4 Laboratory notebook number and page on which test
data are recorded or the computer data file name, if used, or
both.

11.1.5 Numerical values obtained for measured resonant
frequencies, the dynamic Young’s modulus, dynamic shear
modulus, Poisson’s ratio, and temperature of measurement for
each specimen tested.

12. Precision and Bias

12.1 An intralaboratory study by Dickson and Wachtman
(6) on 40 high-density alumina specimens demonstrated an
uncertainty of 0.2 % for the dynamic shear modulus and 0.4 %
for dynamic Young’s modulus. The uncertainty included both
random and systematic errors. This estimate was based upon
uncertainties of 0.1 % on the thickness, width, and mass
measurements; an estimate of 0.1 % on the equations; and
measurements of torsional frequency to 0.0007 % and of
flexural frequency to 0.0015 %. The latter uncertainties were
based upon frequency uncertainties of 0.08 Hz in torsion and
0.03 Hz in flexure. If frequencies are measured to an accuracy
of 1 Hz, the uncertainty for frequency would be larger, but only
0.05 % in flexural and 0.01 % in torsion.

12.2 Spinner and Tefft(1) report that the measured frequen-
cies of bulkier specimens are least affected by the method of
coupling or the position of the supports with respect to the
nodes. In view of these considerations a conservative generic
estimate of the bias for resonant frequencies is about 1 part in
4000 for flexural resonance. For torsional resonant frequencies
Spinner and Valore(5) estimate the bias as one part in 2000 for
flat specimens and one part in 10 000 for square specimens.

12.3 A propagation of errors analysis of the equations forE
and G using the stated precisions for dimensions, mass, and
frequency measurements in this test method is in progress.

13. Keywords

13.1 advanced ceramics; dynamic; elastic modulus; elastic
properties; Poisson’s ratio; resonance; resonant beam; shear
modulus; Young’s modulus

ANNEX

(Mandatory Information)

A1. CORRECTION FOR EDGE CHAMFERS OR RADII IN RECTANGULAR BEAMS IN THE CALCULATION OF YOUNG’S
MODULUS

A1.1 Introduction

A1.1.1 This modulus standard uses a rectangular specimen
with a simple prismatic cross section for calculating the
dynamic Young’s modulus using Eq 2. In actual practice,
rectangular specimens with edge chamfers or radii, as illus-
trated in Figs. A1.1 and A1.2, are frequently used for mechani-
cal testing. (The edge treatment is used with flexure strength
specimens to reduce or eliminate the sensitivity to edge
damage). The modulus equation (Eq 2) in the standard does not
account for the effect of such edge treatments on the moment
of inertia and the density, and subsequent effects on the
dynamic Young’s modulus.

A1.1.2 This annex provides a simple means to modify Eq 2
to correct the calculated Young’s modulus for the two types of
edge treatments. This analysis and corroborative experimental
data are from reference (7). The corrections to E are significant
(0.5 % or greater) for narrow specimens which are typical of
flexure strength test configurations, (for example C 1161). The
corrections are less significant for wide specimens (w/t >5)

such as those recommended in 8.2. These adjustments are only
applicable for flexural modes of resonance and are not appro-
priate for the longitudinal resonance mode or for torsional
resonance.

FIG. A1.1 Specimen Cross Section for a Rounded-Edge Beam
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A1.2 Measurement Procedure

A1.2.1 Measure the chamfer size,c, or the rounded edges,r,
of the rectangular specimen by any convenient method to the
same accuracy used for the overall dimensions. A traversing
stage under a microscope, a traveling microscope, or an optical
comparator may be suitable. Use the averagec, or r, for the
correction. The correction factors and equations below may be
less accurate if the chamfers or rounded edges are uneven or
dissimilar in size. The correction factors only applicable if all
four long edges are treated.

A1.3 Moment of Inertia Correction

A1.3.1 The true Young’s modulus, Ecor, for symmetrically
chamfered specimens may be calculated as follows:

Ecor 5 SIb

It
DEb (A1.1)

where Eb and Ib are the calculated Young’s modulus and
moment of inertia assuming the beam is a simple rectangular
beam, uncorrected for chamfers or rounds, respectively. It is the
true moment of inertia of a beam with four symmetric chamfers
or edge radii applied to the long edges of the beam.

A1.3.2 Chamfers reduce the moment of inertia,I, and
slightly alter the radius of gyration. The effect uponI previ-
ously has been quantified in connection with work to minimize
experimental error in flexure strength testing (Refs. 8, 9, 10).
Even a small chamfer can alterI a meaningful amount. For
example, a 45° chamfer of 0.15 mm size will reduce I by 1 %
for common 3 mm3 4 mm ceramic flexure strength speci-
mens. The moment of inertia,Ib, for a rectangular cross section
beam of thickness, t, and width, b, (with no chamfer) is:

Ib 5
bt3

12 (A1.2)

A1.3.3 The true moment of inertia,It, for a beam with four
45° chamfers of size c along the long edges is (Refs. 8, 9):

It 5
bt3

12 2
c2

9 Sc2 1
1
2 ~3t 2 2c!2D (A1.3)

where the second term on the right hand side shows the
reduction due to the chamfers. It is assumed that the four
chamfers are identical in size.

A1.3.4 The true moment of inertia,It, for a beam with four
identical rounded edges of radius r is (Ref. 9)

It 5
b~t 2 2r!3

12 1
~b 2 2r!r3

6 1
~b 2 2r! ~t 2 r!2 r

2 1 4r4 S p
162

4
9pD

1 pr2 S t
2 2 rS1 2

4
3pDD2

(A1.4)

The true Young’s modulus, Ecor, may be determined from Eq
A1.1

A1.3.5 For standard 3 mm3 4 mm rectangular cross
section flexure strength specimens (C 1161 size B) Eq A1.1
may be expressed:

Ecor 5 FEb (A1.5)

Correction factors F for a standard 3 mm3 4 mm specimen
with four chamfered edges are given in Table A1.1. Analogous
values of F for standard 3 mm3 4 mm specimens with four
rounded edges, r, are given in Table A1.2

A1.4 Density Correction

A1.4.1 An additional correction, but of lesser magnitude,
may also be incorporated. Eq 2 in this standard contains an
assumption (References 1 and 3) that the density is related to
the mass and physical dimensions of the rectangular beam
following Eq A1.6:

rb 5
m

btL (A1.6)

A1.4.2 However, edge treatments alter the relationship be-
tween the density, mass and physical dimensions of the test
piece. If an edge treated beam is used to determine the dynamic
Young’s modulus, then Eq A1.6 is invalid and an additional
correction should be made to E as follows.

The correct density,rt, of a chamfered beam is:

FIG. A1.2 Specimen Cross Section for a Chamfered-Edge Beam

TABLE A1.1 Correction factors, F and P, for chamfered standard
3mm 3 4mm strength test specimens for ASTM C 1161. A

chamfer size of 0.150 mm is the maximum value allowed for this
geometry by ASTM C 1161 and ISO 14704.

Chamfer
Dimension, c

(mm)

Moment Correction factor,
F

b = 4 mm, t = 3 mm

Density Correction factor,
P

b = 4 mm, t = 3 mm
0.080 1.0031 1.0011
0.090 1.0039 1.0014
0.100 1.0048 1.0017
0.110 1.0058 1.0020
0.115 1.0063 1.0022
0.118 1.0066 1.0023
0.120 1.0069 1.0024
0.122 1.0071 1.0025
0.124 1.0073 1.0026
0.126 1.0076 1.0027
0.128 1.0078 1.0027
0.130 1.0080 1.0028
0.132 1.0083 1.0029
0.134 1.0085 1.0030
0.136 1.0088 1.0031
0.138 1.0090 1.0032
0.140 1.0093 1.0033
0.150 1.0106 1.0038
0.160 1.0121 1.0043
0.170 1.0136 1.0048
0.180 1.0152 1.0054
0.190 1.0169 1.0061
0.200 1.0186 1.0067
0.210 1.0205 1.0074
0.220 1.0224 1.0081
0.230 1.0244 1.0089
0.240 1.0265 1.0097
0.250 1.0287 1.0105
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rt 5 m/@L ~bt 2 2c2!# (A1.7)

The correct density,rt, for an edge-rounded beam is:

rt 5 m/@L ~bt 2 r2 ~4 2 p!!# (A1.8)

and then:

Ecor 5 Srt

rb
DEb 5 PEb (A1.9)

where P is the correction factor for the change in ther
relationship due to the edge treatment. Values of P for standard
3 mm 3 4 mm specimens with either four chamfered or
rounded edges are listed in Tables A1.1 and A1.2.

A1.5 Combined Correction

A1.5.1 To correct E for both the change in moment of
inertia and density due to edge treatments on a standard 3mm
3 4 mm cross section specimens:

Ecor 5 SIb

It
DSrt

rb
DEb 5 FPEb (A1.10)

NOTE A1.1—This standard calculates E using Eq 2 which requires the
beam mass and physical dimensions. Other standards and equipment may
use alternative equations that use the material’s density (measured by
Archimedes water displacement or a similar technique) to calculate E. In
such cases, only the moment of inertia correction, Eq A1.5, is necessary.
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TABLE A1.2 Correction factors, F and P, for edge rounded
standard 3mm 3 4mm strength test specimens for ASTM C 1161.
A rounded edge of 0.200 mm is the maximum value allowed for

this geometry by ASTM C 1161 and ISO 14704.

Radius
Dimension, r

(mm)

Moment Correction factor,
F

b = 4 mm, t = 3 mm

Density Correction factor,
P

b = 4 mm, t = 3 mm
0.080 1.0013 1.0005
0.090 1.0017 1.0006
0.100 1.0021 1.0007
0.110 1.0025 1.0009
0.120 1.0030 1.0010
0.130 1.0035 1.0012
0.140 1.0041 1.0014
0.150 1.0046 1.0016
0.160 1.0053 1.0018
0.170 1.0059 1.0021
0.180 1.0066 1.0023
0.190 1.0074 1.0026
0.200 1.0082 1.0029
0.210 1.0090 1.0032
0.220 1.0098 1.0035
0.230 1.0107 1.0038
0.240 1.0116 1.0041
0.250 1.0126 1.0045
0.260 1.0136 1.0049
0.270 1.0146 1.0052
0.280 1.0157 1.0056
0.290 1.0168 1.0061
0.300 1.0180 1.0065
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