
Designation: E 1989 – 98 (Reapproved 2004)

Standard Specification for
Laboratory Equipment Control Interface (LECIS) 1

This standard is issued under the fixed designation E 1989; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification covers deterministic remote control of
laboratory equipment in an automated laboratory. The labor-
intensive process of integrating different equipment into an
automated system is a primary problem in laboratory automa-
tion today. Hardware and software standards are needed to
facilitate equipment integration and thereby significantly re-
duce the cost and effort to develop fully automated laborato-
ries.

1.2 This Laboratory Equipment Control Interface Specifica-
tion (LECIS) describes a set of standard equipment behaviors
that must be accessible under remote control to set up and
operate laboratory equipment in an automated laboratory. The
remote control of the standard behaviors is defined as standard
interactions that define the dialogue between the equipment
and the control system that is necessary to coordinate opera-
tion. The interactions are described with state models in which
individual states are defined for specific, discrete equipment
behaviors. The interactions are designed to be independent of
both the equipment and its function. Standard message ex-
changes are defined independently of any specific physical
communication links or protocols for messages passing be-
tween the control system and the equipment.

1.3 This specification is derived from the General Equip-
ment Interface Definition developed by the Intelligent Systems
and Robotics Center at Sandia National Laboratory, the Na-
tional Institute of Standards and Technologies’ Consortium on
Automated Analytical Laboratory Systems (CAALS) High-
Level Communication Protocol, the CAALS Common Com-
mand Set, and the NISTIR 6294(1-4).2 This LECIS specifi-
cation was written, implemented, and tested by the Robotics
and Automation Group at Los Alamos National Laboratory.

1.4 Equipment Requirements—LECIS defines the remote
control from a Task Sequence Controller (TSC) of devices
exhibiting standard behaviors of laboratory equipment that

meet the NIST CAALS requirements for Standard Laboratory
Modules (SLMs) (5). These requirements are described in
detail in Refs(3, 4). The requirements are:

1.4.1 Predictable, deterministic behavior,
1.4.2 Ability to be remotely controlled through a standard

bidirectional communication link and protocol,
1.4.3 Maintenance of remote communication even under

local control,
1.4.4 Single point of logical control,
1.4.5 Universal unique identifier,
1.4.6 Status information available at all times,
1.4.7 Use of appropriate standards including the standard

message exchange in this LECIS,
1.4.8 Autonomy in operation (asynchronous operation with

the TSC),
1.4.9 Perturbation handling,
1.4.10 Resource management,
1.4.11 Buffered inputs and outputs,
1.4.12 Automated access to material ports,
1.4.13 Exception monitoring and reporting,
1.4.14 Data exchange via robust protocol,
1.4.15 Fail-safe operation,
1.4.16 Programmable configurations (for example, I/O

ports),
1.4.17 Independent power-up order, and
1.4.18 Safe start-up behavior.

2. Terminology

2.1 Definitions of Terms Specific to This Standard:
2.1.1 command message—communication from the TSC to

the SLM that is being controlled. Receipt of this message
causes a state transition in an interaction.

2.1.2 device capability dataset—data file that contains all of
the SLM-specific information required for the TSC to interact
with the SLM(2). This includes definitions of the arguments of
the standard commands and events, estimates of processing
times in states, and SLM specific interactions. Material input
and output ports and support services are also defined.

2.1.3 error—infrequent, unplanned event that makes the
current goal of the SLM unachievable given the system
resources, the state of the system, or the absence of a
guaranteed, alternative plan. (This definition is distinct from
any other ASTM standard definition of error.)

1 This specification is under the jurisdiction of ASTM Committee E01 on
Analytical Chemistry for Metals, Ores and Related Materials and is the direct
responsibility of Subcommittee E01.25 on Laboratory Data Interchange and
Information Management.

Current edition approved April 1, 2004. Published May 2004. Originally
approved in 1998. Last previous edition approved in 1998 as E 1989-98.

2 The boldface numbers in parentheses refer to the list of references at the end of
this standard.

1

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

2.1.4 event—change in the operational state of the SLM that
must be reported to the TSC.

2.1.5 event report—communication from the SLM to the
TSC indicating an event.

2.1.6 exception—off-normal change in the operational state
of the SLM that prevents the goal from being achieved through
the normal sequence of state transitions in an interaction.
Alternative sequences of state transitions in an interaction are
provided as part of the interaction definition in order to handle
an exception. Occurrence of an exception invokes an action
that is simply an alternative in the course of normal processing.
It causes suspension of normal operation and initiates a defined
alternative operation.

2.1.7 interaction—standard exchange of messages between
the TSC and SLM that synchronizes the execution of a series
of standard SLM behaviors. State models are used to describe
the standard interactions.

2.1.8 material—any input being processed by the SLM or
output produced by the SLM, including samples, consumables,
and data.

2.1.9 message—event or command that is passed between a
TSC and an SLM.

2.1.10 message transaction—synchronized exchange of a
message and its acknowledgment. There are two types of
message transactions: (1) Command transactions are initiated
by a command from the TSC to the SLM. (2) Event reports are
initiated by the SLM to the TSC.

2.1.11 port—physical or logical location in the SLM that
accepts or provides material or data. Physical ports are used to
transfer items such as samples and supplies. Logical or data
ports are used to transfer data to and from the SLM.

2.1.12 port index—ports may have multiple internal loca-
tions. These internal locations are tracked with the Port Index.

2.1.13 standard laboratory module (SLM)—laboratory
equipment that satisfies the NIST CAALS physical and behav-
ior requirements(5).

2.1.14 state—standard logical configuration of the SLM for
the purposes of remote control that may correspond to a logical
or hardware configuration or both. Specific behaviors and
operations of the SLM are allowed in each state.

2.1.15 state model—graphical illustration of the states in the
standard interactions. Transitions between states in the inter-
action, indicated by arrows, are initiated and tracked with
messages.

2.1.16 task sequence controller(TSC)—software system
that orchestrates the execution of tasks (steps in sample
processing) by assigning them to the appropriate SLM and
coordinating material and data movement to and from the SLM
selected for particular tasks.

3. Notation and General Message Syntax

3.1 Notation—In the discussions of the messages between
the TSC and SLM, the following arrow symbols are used to
indicate the nature of the message. These symbols are provided
as a guide to the reader; they arenot part of the message
definition.

Symbol Description
⇒ Command from the TSC
⇐ Event from the SLM

→ Event message acknowledgment from the TSC to the SLM
← Command message acknowledgement from the SLM to the

TSC

3.2 General Message Syntax—The messages in this speci-
fication are defined inExtended Backus Naur Form(EBNF)
(6). A description of the symbols used in the message definition
is provided in Table 1. The EBNF definition of all data types
used with the message definitions is provided in Annex A1.
The message definitions in Annex A1 use a Arial font to denote
definitions in EBNF data types and bold Courier font to denote
the exact ASCII string that is used in the message. Throughout
the text of this specification, EBNF data types appear in the
text font. Boldface is used to denote the exact ASCII string. For
example, the <REMOTE CTRL ACCEPTED MSG> EBNF
data type is defined to be theREMOTE_CTRL_ACCEPTED
string.

3.3 Although this specification defines commands and event
reports in upper case characters, the TSC and SLM message
handlers should treat messages ascase-insensitive. For ex-
ample, this specification defines the emergency stop command,
transmitted from the TSC to the SLM, as ESTOP. However, the
messages “EStop,” “Estop,”“ estop,” or any other combination
of upper and lower case should be interpreted as ESTOP.
Message parameters, however, arecase-sensitive.

4. Control Paradigm

4.1 Control Principle—Fig. 1 illustrates the laboratory au-
tomation control architecture to which this specification is
designed(7). An SLM can only be controlled by one TSC at
any given time. An SLM may not communicate directly with
another SLM. The TSC sends command messages to the SLM,
and the SLM sends event reports to the TSC. The communi-
cation channel between the TSC and SLM is logically separate
for each SLM but need not be physically separate. For
example, a TCP/IP network will allow multiple devices on a
single physical link. A single logical link between the TSC and
SLM is also not required in this specification. The (single or
multiple) physical links between the TSC and SLM can be
multiplexed into multiple logical channels.

4.2 Communication Requirements—The interface described
here is independent of the physical communication link and
message exchange protocol. However, the communication link
chosen shall meet the following requirements in order to be
compliant with this LECIS.

4.2.1 The physical communication links must ensure accu-
rate messaging by providing a low-level communication check
of the accuracy of message transmission (parity checking,
checksums, etc.).

TABLE 1 EBNF Message Definition Symbols

<FIELD> non-terminal string
::= is defined as
? choice of either field on each side
[] optional one or none
{} 0 or more repetitions
{}xy at least x, maximal y repetitions
(MSB) this field is most significant bit or byte in multi bit or byte

sequence
BOLD terminal ASCII or hex symbol, in bold
Xx .. yy terminal range from xx to yy
9STRING9 literal insertion of string (without quotes)

E 1989 – 98 (2004)

2

4.2.2 The communication link cannot be blocked while the
SLM performs a task. To prevent blocking, the SLM may
provide channel multiplexing or separate communication links.

4.2.3 Both the TSC and SLM must periodically validate
communication integrity.

4.2.4 Messages from and to instruments must be uniquely
identifiable.

4.3 Interaction:
4.3.1 All communications between the TSC and an SLM in

an automated laboratory are modeled as interactions. These
interactions define the standard behaviors of SLMs and the
standard message exchange needed to control the behaviors.

4.3.2 LECIS distinguishes betweenrequired and optional
interactions and defines the required interactions. The required
interactions provide basic remote control functionality for any
type of laboratory equipment. SLMs shall implement the
required interactions. Additional optional interactions can be
defined by the SLM manufacturer to provide remote control of
SLM-specific behaviors. These interactions are not the subject
of this specification. Fig. 2 shows a breakdown of the interac-
tion classes and types.

4.3.3 There are two types of interactions—primary and
secondary. Primary interactions are permanently active and
there can only be one instance of each primary interaction
active at any time. Secondary interactions, by contrast, are

created and terminated as needed. For example, an instance of
the Processing secondary interaction is created when the TSC
wants the SLM to perform an operation on an input material.
The interaction instance is terminated once the operation is
completed. There is no limit in this specification to the number
of instances of any secondary interaction that can be active
simultaneously. Note that creating multiple instances of a
secondary interaction is a way to implement command stack-
ing. Table 2 lists the required primary and secondary interac-
tions.

4.4 Interaction Identifier:
4.4.1 The interaction identifier allows the TSC and SLM to

identify a specific instance of an interaction. A session-unique
interaction identifier is required since multiple instances of
(secondary) interactions may exist simultaneously. The inter-
action identifier is attached to all command and event report
messages. This enables the TSC and SLM to associate the
commands and event reports with the appropriate interaction
instance. The interaction identifier generated by a specific SLM
is only required to be unique for that SLM.

4.4.2 The interaction identifier is generated for the first
message in the interaction. If the first message is a command,
the TSC generates the interaction identifier. If the first message
is an event report, the SLM generates the interaction identifier.
Once created, the interaction identifier remains the same

FIG. 1 Simplified, Local Control Architecture

FIG. 2 Interaction Categories

E 1989 – 98 (2004)

3

throughout the lifetime of the interaction instance and is used
to label each additional message in that interaction. This
specification does not place a requirement on how the interac-
tion identifier is generated. Any unique integer identifier can be
used as an interaction identifier. We suggest that a unique
interaction identifier be generated from a date and time
combination. For example, from August 10, 1996, 14:22:10.33
we could generate the following interaction identifier:
1996081014221033 (YYYYMMDDHHMMSSSS). However,
one could also generate an integer-based identifier using a
simple counter mechanism if no real-time clock is available on
the instrument.

4.5 State Models:
4.5.1 Interactions are defined by state models. Standardized

state models and message exchange ensure that both the TSC
and the SLM are aware of each other’s state during interac-
tions. Specific, discrete SLM behaviors and operations are
allowed in the appropriate standard states. State transitions,
following the arrows in the state model, occur as a result of the
conclusion of internal operation by the SLM or as a result of
commands from the TSC and are signaled by (and synchronous
with) a message transaction. Message transactions are modeled
as instantaneous in the state models. A state model consists of
a graphic state chart, a text description of the states, a table of
state transitions describing the command or event that cause
the transition, and table(s) defining the corresponding mes-
sages for each state transition. Numbered rows in the table of
state transitions correspond to numbered transitions between
the states in the state chart.

4.5.2 The messages are completely standardized by this
specification. The specification is customized to the control of
vendor-specific equipment using the arguments of the com-
mands and events. The message arguments are described in the
SLM’s capability dataset(2) that must be provided by vendors
with their equipment.

4.5.3 The Harel notation for state diagrams is used to
illustrate the state charts(8). Table 3 illustrates the Harel state
chart symbols that are used in this specification. The Harel
notation allows for hierarchical states and default initial
substates when entering an encompassing parent state. The
history selector indicates that the system is to return to the
substate that was active at the last transition out of the parent
state. Transitions themselves are unidirectional, but separate
transitions can be used to toggle between states. Concurrent
interactions are independent and, with two exceptions in this
specification, do not directly cause transitions in each other, but
they do share common context. They can be thought of as

weakly interacting subsystems. The use of concurrent states
allows modularity of the model and greatly simplifies the
individual state models. All the interactions defined in this
specification may be active concurrently. The hierarchical state
model that represents the primary Control Flow interaction is
discussed in 7.2.

4.5.4 If an error occurs in the execution of a state transition
or while the SLM is operating, the interactionremainsin the
originating state. This ensures the SLM and the associated
interaction are in a known state. Abnormal termination of
interactions is addressed in 9.3.

4.6 Asynchronous Master/Slave Control Model:
4.6.1 The messages that the TSC and SLM use to inform

each other of their state transitions are defined to be asynchro-
nous of one another; there is no requirement in this specifica-
tion for a time interval in which a command follows an event
report or an event report follows a command.

4.6.2 This specification follows a master/slave model of
equipment control. Commands are issued by the controller and
cause action to occur in the SLM. Event reports are generated
by the SLM after the action is completed. An event report
signals the end of the action by the SLM and may convey
information about the results. This is illustrated in the state
model by states that are entered by a command and exited by
an event report. States that are normally exited by an event
report are the states in which the SLM engages in appropriate
action commanded by the TSC. If a specific piece of laboratory
equipment has no internal operation or behavior that logically
corresponds to a standard state, the SLM may “fall through”
the state and immediately exit it with an event report after the
state is entered.

4.6.3 States that are normally exited by a command are
states in which the SLM is waiting for a command from the
TSC. While in one of these states the SLM must not engage in
any process that requires time to complete. In other words,
while in states that are exited by a command message, the SLM
must be ready for the command at any time.

4.6.4 There is usually a one-to-one correspondence between
command and event reports. Exceptions are the interactions,
such as the Processing interaction, that have states both entered
and exited with an event report. Other exceptions are interac-
tions that are initiated by an event report, such as the Item
Available Notification interaction. Interactions initiated by the
SLM should be done so as a result of a command in another
interaction. For example, the Item Available interaction is used
to signal that the product of an action in the Processing

TABLE 2 Required Interactions

Type of Interaction Interaction

Primary Local/Remote Control
Control Flow

Secondary Processing
Status
Lock/Unlock
Abort
Alarm
Item Available Notification
Next Event

TABLE 3 Harel State Chart Symbols

State

Transition

Default Entry Point

History Selector

E 1989 – 98 (2004)

4

interaction is available for removal. These interactions are
defined separately to increase the versatility of this specifica-
tion.

4.6.5 LECIS assumes that transitions between states are
instantaneous and concurrent with the positive acknowledg-
ment in the message transactions signaling these transitions. In
all but two cases, there is a one-to-one correspondence between
state transitions and message transactions in this specification.
The two exceptions are the required transition to LOCAL with
a transition to ESTOPPED (6.5) and the transition to TERMI-
NATED in the Next Event interaction (6.7) concurrent with
every event report message transaction.

4.7 Device Capability Dataset—The vendor’s equipment-
specific information necessary to implement this communica-
tion standard is described in each SLM’s Device Capability
Dataset(2). The capability data set defines the arguments of
each standard command and event report for that SLM. The
Device Capability Dataset also contains information such as
the physical characteristics of the SLM, the resources that it
uses in its tasks, and definitions of optional interactions.

4.8 System and Equipment Resources:
4.8.1 Data and material handling by the SLMs may require

the use of resources. Examples of resources are racks, contain-
ers, solvent reservoirs, and storage media such as hard disks.
There are two types of resources,public and private. Public
resources are owned by the system. Private resources are
controlled by the SLM that owns that resource. An SLM’s
private resources are defined in its capability dataset.

4.8.2 The TSC provides centralized management of the
public resources; tracking, allocating, and assigning resources
to SLMs as needed. For this reason, an SLM’s use of public
resources must be negotiated with the TSC. Note that it is
possible for private resources to become public and vice versa
through negotiations between the SLM and TSC.

5. Message Transactions

5.1 Message transactions have two parts, the initiating
message and its acknowledgment. If the message is correct, a
positive acknowledgment (ACK) is returned to the sender. If
not, a negative acknowledgment (NACK) is returned with, if
possible, an indication of the error. The message acknowledg-
ment in this specification is independent of, and in addition to,
any acknowledgments required by the physical communication
link and message exchange protocol.

5.2 The message recipient must acknowledge each message
before a subsequent message can be sent to it. This prevents
queuing of messages with the associated synchronization
problems. Furthermore, spooling of commands that are sequen-
tial within an interaction is not allowed. If possible, prior to
acknowledgment, the recipient should check to see if the
message is legal for the existing state of the interaction to
which the message applies, and if the message syntax and
semantics are correct.

5.3 Command Message Transactions—Fig. 3 and Fig. 4
show the two possible command message transactions. Fig. 3
illustrates the TSC sending a command to the SLM and the
SLM then replying with a positive acknowledgment message.
The negative acknowledgment, NACK (Fig. 4), is provided as
a means for the SLM to reject a command.

5.3.1 Command Message Syntax—A command is composed
of an interaction identifier, a command name, and optional
command arguments. The interaction identifier is a unique
identification number of the interaction to which the command
relates. When multiple instances of the same interaction are
active, the interaction identifier enables the SLM to associate
the command message with the correct interaction. A list of
supported commands and their arguments is provided in the
SLM’s capability dataset(2).

5.3.1.1 The standard interactions in Sections 6-9 define
specific command names (<COMMAND ID>) and optional
command arguments (<COMMAND ARGS>). For clarity, the
interaction identifier necessary to make up a complete com-
mand message is omitted from the examples provided for each
message.

Command Message in EBNF-Syntax

<COMMAND MSG> ::= <INTERACTION ID> <,>< COMMAND ID>
[<COMMAND ARGS]

Message Parameter

<COMMAND ARGS> command arguments as specified in the SLM’s capa-
bility dataset
data type: <DATA STREAM>
range: unspecified

<COMMAND ID> command identifier as specified in the SLM’s capabil-
ity dataset
data type: <PARAMETER>
range: unspecified

<INTERACTION ID> unique identifier representing the interaction instance
in which the command is sent
date type: <INTEGER NUMERIC PARAMETER>
range: unspecified
(see 4.4)

5.3.2 Command Message Acknowledgment—A positive ac-
knowledgment message (ACK) indicates that the message has
been received and is acceptable at whatever level of syntax and
semantic checking is implemented by the SLM. An ACK from
the SLM indicates that the SLM has changed state (message
transactions are synchronous with the state changes).

5.3.2.1 The negative acknowledgment, NACK, is provided
as a means for the SLM to reject a command. If a command
message transaction is concluded with a NACK, the command
is rejected and the interaction remains in the original state. This
leaves the SLM and the associated interaction in a known state.

5.3.2.2 When the tables describing the command transac-
tions and event report transactions in this specification do not

FIG. 3 Command/ACK Exchange

FIG. 4 Command/NACK Exchange

E 1989 – 98 (2004)

5

contain an explicit acknowledgment, the default is specified.
The default standard ACK/NACK message is described in the
SLM’s capability dataset(2).

5.3.2.3 Like the messages themselves, event acknowledg-
ments contain interaction identifiers. This enables the TSC and
SLM to map the acknowledgment to the originating message
and interaction.

ACK Message in EBNF-Syntax

<ACK MSG> ::= <INTERACTION ID> <,> ACK

Message Parameter

<INTERACTION ID> unique identifier that represents the interaction in-
stance in which the command/event to be acknowl-
edged was sent
data type:<INTEGER NUMERIC PARAMETER>
range: unspecified
(see 4.4)

NACK Message in EBNF-Syntax

<NACK MSG> ::= <INTERACTION ID> <,> NACK [<(> <ERROR
ID> [<,> <ERROR ARG LIST]<)]

<ERROR ARG LIST> ::= <(> <ERROR ARG> {<,> <ERROR ARG>} <)>

Message Parameter

<ERROR ARG> error (event) argument
data type:<PARAMETER>
range: unspecified

<ERROR ID> error (event) identifier
data type:<PARAMETER>
range: unspecified

<INTERACTION ID> unique identifier that represents the interaction in-
stance in which the command/event to be acknowl-
edged was sent
data type:<INTEGER NUMERIC PARAMETER>
range: unspecified
(see 4.4)

5.3.3 Standard NACK Messages—This specification defines
standard NACK error messages below. These messages should
be implemented on SLMs that perform the syntax and semantic
checking that would lead to the relevant error condition. SLM
manufacturers are free to specify additional NACK messages
to report error conditions that are not encompassed by the
standard NACK messages below.

<ARG OUT OF RANGE MSG> ::= ARG_OUT_OF_RANGE <(> <ARG
RANGE LIST> <)>

<CMD NOT SUPPORTED
MSG>

::= CMD_NOT_SUPPORTED [<(> <ERROR
CODE> [<,> <ERROR TEXT]<)]

<GENERAL OP FAILED MSG> ::= GENERAL_OP_FAILED [<(> <ERROR
CODE> [<,> <ERROR TEXT]<)]

<INVALID ARG MSG> ::= INVALID_ARG <(> <ARG INDEX> <)>

<INVALID CMD MSG> ::= INVALID_CMD [<(> <ERROR CODE>
[<,> <ERROR TEXT] <)]

<INVALID CONFIG MSG> ::= INVALID_CONFIG [<(> <ERROR
CODE> [<,> <ERROR TEXT] <)]

<INVALID DATA MSG> ::= INVALID_DATA [<(> <ERROR CODE>
[<,> <ERROR TEXT] <)]

<INVALID DATA TYPE MSG> ::= INVALID_DATA_TYPE <(> <ARG IN-
DEX>

[<,> <EXPECTED DATA TYPE] <(>

<INVALID STATE MSG> ::= INVALID_STATE <(> [<CURRENT
STATE> <,]

<EXPECTED STATE>< (>

<MISSING ARG MSG> ::= MISSING_ARG <(> <EXPECTED NUM
ARGS> <(>

<MISSING CMD MSG> ::= MISSING_CMD [<(> <ERROR CODE>
[<,> <ERROR TEXT] <)]

<ARG RANGE> ::= <ARG INDEX> [<(> [<ARG MIN] [<,>
<ARG MAX] <)]

<ARG RANGE LIST> ::= {<(> <ARG RANGE><)>}

Message Parameter

<ARG INDEX> argument index (>=1)
data type: <INTEGER NUMERIC>
range: unspecified

<ARG MAX> maximum argument value
data type: <PARAMETER>
range: unspecified

<ARG MIN> minimum argument value
data type: <PARAMETER>
range: unspecified

<CURRENT STATE> current interaction state
data type: <STRING PARAMETER>
range: unspecified

<ERROR CODE> code representing the type of error
data type: <REASON CODE>
range: –00001..–32767

<ERROR TEXT> optional text describing the error
data type: <STRING PARAMETER>
range: unspecified

<EXPECTED DATA TYPE> expected data type
data type: <STRING PARAMETER>
range: unspecified

<EXPECTED STATE> expected interaction state
data type: <STRING PARAMETER>
range: unspecified

5.3.4 Command Message Transaction Scenarios:
5.3.4.1 Message Scenario 1:

⇒ 08109614221033, INIT
← 08109614221033, ACK

5.3.4.2 Message Scenario 2:
⇒ 1996121108342123, SETUP (9ANALYSIS 129)
← 1996121108342123, NACK (INVALID_CMD (–122))

5.4 Event Report Message Transactions—Fig. 5 and Fig. 6
show the two possible event report message transactions. Upon
receiving an event from the SLM, the TSC is expected to
acknowledge the event message with either a positive or
negative acknowledgment. In the same fashion as 5.3.2, the
NACK response is used to signal a messaging error.

FIG. 5 Event/ACK Exchange

E 1989 – 98 (2004)

6

5.4.1 Event Report Syntax—Each event report can have up
to four parts: interaction identifier, event time, event identifier,
and optional event data. The interaction identifier is a unique
identification number of the interaction to which the event
report relates. When multiple instances of the same interaction
are active, the interaction identifier enables the TSC to associ-
ate the event report message with the correct interaction. The
event time is the time the event report was generated. This
facilitates a chronological trace and log of all event report
messages. If the equipment implementing this standard does
not have a clock, then a counter value can be used in place of
the time. This counter value can then be incremented or
decremented with each event. The event identifier identifies the
type of event report. An event report can also contain a list of
event arguments. The event identifier and the event arguments
are specified in the SLM’s capability dataset(2).

5.4.1.1 The standard interactions in Sections 6-9 define
specific event identifiers (<EVENT ID>) and optional event
data (<EVENT ARGS>). For clarity, the interaction identifier
necessary to make up a complete event message is omitted
from the examples provided for each message.

Event Message in EBNF-Syntax

<EVENT MSG> ::= <INTERACTION ID> <,>< EVENT TIME> <,>
<EVENT ID> [<EVENT ARGS>]

Message Parameter

<EVENT ID> event arguments as specified in the SLM’s capa-
bility dataset
data type: <DATA STREAM>
range: unspecified

<EVENT ARGS> event identifier as specified by the event entry in
the capability dataset
data type: <PARAMETER>
range: unspecified

<EVENT TIME> time event was generated; replaced by a simple,
14-digit counter value if no clock is provided
Examples:
Data & Time stamp of format: yyyymmddh-
hmmssss

August 10, 1996, 14:22:10.33 ->
1996081014221033
or
Counter:

00000000012345
data type: <INTEGER NUMERIC PARAMETER>
range: 00000000000000 - 99999999999999

Note: leading 0’s are required

<INTERACTION ID> unique identifier that represents the interaction
instance in which the event occurred. If the event
initiates a new interaction, then the SLM must
create a new, unique interaction identifier.
data type: <INTEGER NUMERIC PARAMETER>
range: unspecified
(see 4.4)

5.4.2 Event Report Acknowledgment:

5.4.2.1 The meaning of the ACK and NACK event report
acknowledgments from the TSC are identical to the definitions
in 5.3.2. A positive acknowledgment message (ACK) indicates
that the message has been received and is acceptable at
whatever level of syntax and semantic checking is imple-
mented by the TSC. The negative acknowledgment, NACK, is
provided as a means for the TSC to indicate to the SLM that the
event report is in error in some way. If an event report
transaction is concluded with a NACK, the interaction remains
in the original state. This leaves the SLM and the associated
interaction in a known state.

5.4.2.2 Like the messages themselves, event acknowledg-
ments contain interaction identifiers. This enables the TSC and
SLM to map the acknowledgment to the originating message
and interaction.

5.4.3 Event Report Message Transaction Scenarios:
5.4.3.1 Message Scenario 1:

⇐ 08109614221033, 1996121108342123, NO_ALARMS
→ 08109614221033, ACK

5.4.3.2 Message Scenario 2:
⇐ 08109609444300, 1996121108342123, STATE_CHANGED (9INITING9,
9IDLE9)
→ 08109609444300, NACK (INVALID_STATE (9INITING9, 9IDLE9))

6. Communication Maintenance and Locus of Control

6.1 Establishing and Maintaining Communications—The
details of preparing for and initializing communications are
dependent upon the type of physical communication link and
low-level message passing protocol employed between the
SLM and TSC. Message passing between the TSC and SLM
must be implemented with the following behaviors in order to
be compatible with this LECIS (see also 4.2).

6.1.1 When in the POWERED UP state, the SLM must take
the necessary steps to initiate communication with the TSC.

6.1.2 After communication has been established, the SLM
and TSC should synchronize internal clocks.

6.1.3 After communication has been established, the SLM
must allow communication with the TSC at all times, including
when the SLM is in the LOCAL state.

6.1.4 The SLM must be able to detect loss of communica-
tion with the TSC.

6.1.5 Upon loss of communication with the TSC, the SLM
must perform the necessary steps to allow communication to be
reestablished.

6.1.6 SLMs should have clearly defined behavior at loss of
communication that includes a graceful end of processing so
that process information is not lost. An SLM-initiated transi-
tion to PAUSING should occur when the continued execution
of current and pending instrument operations would overflow
the event queue.

6.2 Local/Remote Control Interaction:
6.2.1 In an automated laboratory an SLM can either be

under local or remote control. Even SLMs whose hardware
does not support local operations must provide for a software-
based local control state, because the local control state is
integral to the specified emergency stop behavior (see 7.7).

6.2.2 The primary Remote/Local Control interaction de-
scribes the LOCAL and REMOTE states and the transitions
between them. Fig. 7 represents the state chart for the Control

FIG. 6 Event/NACK Exchange

E 1989 – 98 (2004)

7

Status interaction. The transitions shown in this state chart are
described in 6.4 and 6.5. While under remote control, the SLM
behavior is governed by LECIS. The SLM must allow all
interactions while in remote control. This specification also
requires communication and certain interactions while the
SLM is under local control.

6.2.3 For safety reasons, the SLM and the TSC must
negotiate for changes in the control status. Hand-offs between
local and remote control are negotiated through the intermedi-
ate states. Neither can take control from the other with the
exception that a state change to ESTOPPED in the Control
Flow interaction requires a concurrent, non-negotiated state
change to LOCAL.

6.2.4 After communication has been established, the initial
state at power up is expected to be LOCAL.

6.3 Description of Local/Remote Control Interaction States:
6.3.1 LOCAL —The SLM operation is controlled locally.

While under local control, the SLM is only allowed to process
status and remote control requests or ESTOP commands. The
SLM should refuse all other commands by concluding the
command message transaction with a NACK message (5.3.2).
The TSC may receive event reports from the SLM as the SLM
changes states under local control.

6.3.2 LOCAL CTRL REQUESTED —The SLM enters
this state from the REMOTE state upon issuing or receiving a
local control request. In this state, the SLM or the TSC is able
to accept the request and transition to LOCAL or reject the
request and transition back to REMOTE.

6.3.3 REMOTE —The TSC has access to all standard SLM
control functions through the standard interactions.

6.3.4 REMOTE CTRL REQUESTED —The SLM enters
this state from the LOCAL state upon issuing or receiving a
remote control request. In this state, the SLM or the TSC is
able to accept the request and transition to REMOTE, or reject
the request and transition back to LOCAL.

6.4 Transfer to Remote Control:
6.4.1 A transfer from local to remote control can be either

initiated by the TSC with a command message or initiated by
the SLM with an event report message. Because of this, the
message protocol is described twice, in Tables 4 and 5. The
required messages for a TSC-initiated transfer to local control
through the intermediate REMOTE CTRL REQUESTED state

are described in Table 4. The required messages for an
SLM-initiated transfer to local control are described in Table 5.

6.4.2 While in local control, if the configuration of the SLM
has been changed such that the SLM is returning to remote
control in a different state in any interaction than when it
entered local control, the operator should restart the SLM.
Alternately it may be possible for the operator to update the
TSC manually to reflect the new state of the SLM when it
reenters REMOTE, however this must be done with care.

Messages in EBNF-Syntax

<REMOTE CTRL ACCEPTED
MSG>

::= REMOTE_CTRL_ACCEPTED

<REMOTE CTRL DENIED
MSG>

::= REMOTE_CTRL_DENIED [<(> [<RE-
JECT REASON CODE> <,]

[<REJECT REASON TEXT] <)]
<REMOTE CTRL REQ MSG> ::= REMOTE_CTRL_REQ

Message Parameter

<REJECT REASON CODE> code describing reason for rejection
data type: <REASON CODE>
range: –00001..–32767

<REJECT REASON TEXT> text describing reason for rejection

FIG. 7 Local/Remote Control State Chart

TABLE 4 Messages for Transferring to Remote Control (TSC-
initiated)

Number Message Exchange Old State New State

1 ⇒ REMOTE_CTRL_REQ LOCAL REMOTE CTRL
REQUESTED

2 ⇐ REMOTE_CTRL_ACCEPTED REMOTE CTRL
REQUESTED

REMOTE

3 ⇐ REMOTE_CTRL_DENIED
(REJECT REASON CODE,A

REJECT REASON TEXT)A

REMOTE CTRL
REQUESTED

LOCAL

A Optional.

TABLE 5 Messages for Transferring to Remote Control (SLM-
initiated)

Number Message Exchange Old State New State

1 ⇐REMOTE_CTRL_REQ LOCAL REMOTE CTRL
REQUESTED

2 ⇒REMOTE_CTRL_GRANTED REMOTE CTRL
REQUESTED

REMOTE

3 ⇒REMOTE_CTRL_DENIED
(REJECT REASON CODE,A

REJECT REASON TEXT)A

REMOTE CTRL
REQUESTED

LOCAL

A Optional.

E 1989 – 98 (2004)

8

data type: <STRING PARAMETER>
range: unspecified

6.4.2.1 Message Scenario 1:
⇒ REMOTE_CTRL_REQ
⇐ REMOTE_CTRL_ACCEPTED

6.4.2.2 Message Scenario 2:
⇒ REMOTE_CTRL_REQ
⇐ REMOTE_CTRL_DENIED (–1022, 9OPERATOR OVERWRITE9)

Messages in EBNF-Syntax

<REMOTE CTRL DENIED
MSG>

::= REMOTE_CTRL_DENIED [<(> [<RE-
JECT REASON CODE> <,]

[<REJECT REASON TEXT] <)]
<REMOTE CTRL GRANTED
MSG>

::= REMOTE_CTRL_GRANTED

<REMOTE CTRL REQ MSG> ::= REMOTE_CTRL_REQ

Message Parameter

<REJECT REASON CODE> code describing reason for rejection
data type: <REASON CODE>
range: –00001..–32767

<REJECT REASON TEXT> text describing reason for rejection
data type: <STRING PARAMETER>
range: unspecified

6.4.2.3 Message Scenario 1:
⇐ REMOTE_CTRL_REQ
⇒ REMOTE_CTRL_GRANTED

6.4.2.4 Message Scenario 2:
⇐ REMOTE_CTRL_REQ
⇒ REMOTE_CTRL_DENIED (–1231, 9CONTROLLER OVERWRITE9)

6.5 Transfer to Local Control:

6.5.1 A transfer from remote to local control can be either
initiated by the TSC or the SLM. Because of this, the message
protocol has been described twice, in Table 6 and Table 7. The
non-negotiated transfer to local control concurrent with a
transition to ESTOPPED is described in Table 8 and Table 9.
See 7.5 for message EBNF-Syntax and example.

Message in EBNF-Syntax

<LOCAL CTRL ACCEPTED
MSG>

::= LOCAL_CTRL_ACCEPTED

<LOCAL CTRL DENIED
MSG>

::= LOCAL_CTRL_DENIED [<(> [<REJECT
REASON CODE> <,]

[<REJECT REASON TEXT] <)]
<LOCAL CTRL REQ MSG> ::= LOCAL_CTRL_REQ

Message Parameter

<REJECT REASON CODE> code describing reason for rejection
data type: <REASON CODE>
range: –00001..–32767

<REJECT REASON TEXT> text describing reason for rejection
data type: <STRING PARAMETER>
range: unspecified

6.5.1.1 Message Scenario 1:
⇒ LOCAL_CTRL_REQ
⇐ LOCAL_CTRL_ACCEPTED

6.5.1.2 Message Scenario 2:
⇒ LOCAL_CTRL_REQ
⇐ LOCAL_CTRL_DENIED (–1500, 9OPERATOR OVERWRITE9)

Messages in EBNF-Syntax

<LOCAL CTRL DENIED MSG> ::= LOCAL_CTRL_DENIED [<(> [<REJECT
REASON CODE> <,]

[<REJECT REASON TEXT] <)]
<LOCAL CTRL GRANTED
MSG>

::= LOCAL_CTRL_GRANTED

TABLE 6 Messages for Transferring to Local Control (TSC-
initiated)

Number Message Exchange Old State New State

4 ⇒ LOCAL_CTRL_REQ REMOTE LOCAL CTRL
REQUESTED

5 ⇐ LOCAL_CTRL_ACCEPTED LOCAL CTRL
REQUESTED

LOCAL

6 ⇐ LOCAL_CTRL_DENIED
(REJECT REASON CODE,A

REJECT REASON TEXT)A

LOCAL CTRL
REQUESTED

REMOTE

A Optional.

TABLE 7 Messages for Transferring to Local Control (SLM-
initiated)

Number Message Exchange Old State New State

4 ⇐ LOCAL_CTRL_REQ REMOTE LOCAL CTRL
REQUESTED

5 ⇒ LOCAL_CTRL_GRANTED LOCAL CTRL
REQUESTED

LOCAL

6 ⇒ LOCAL_CTRL_DENIED
(REJECT REASON CODE,A

REJECT REASON TEXT)A

LOCAL CTRL
REQUESTED

REMOTE

A Optional.

TABLE 8 Message for Transferring to Local Control Concurrent
with ESTOP Command

Number Message Exchange Old State New State
7 ⇒ ESTOP REMOTE or LOCAL LOCAL

TABLE 9 Message for Transferring to Local Control Concurrent
with ESTOP Event

Number Message Exchange Old State New State
7 ⇐ STATE_CHANGED

(, 9ESTOPPED9)
REMOTE or LOCAL LOCAL

E 1989 – 98 (2004)

9

<LOCAL CTRL REQ MSG> ::= LOCAL_CTRL_REQ

Message Parameter

<REJECT REASON CODE> code describing reason for rejection
data type: <REASON CODE>
range: –00001..–32767

<REJECT REASON TEXT> text describing reason for rejection
data type: <STRING PARAMETER>
range: unspecified

6.5.1.3 Message Scenario 1:
⇐ LOCAL_CTRL_REQ
⇒ LOCAL_CTRL_GRANTED

6.5.1.4 Message Scenario 2:
⇐ LOCAL_CTRL_REQ
⇒ LOCAL_CTRL_DENIED (9CONTROLLER OVERWRITE9)

Messages in EBNF-Syntax

<ESTOP MSG> ::= ESTOP

6.5.1.5 Message Scenario:
⇒ ESTOP

6.5.1.6 Message Scenario:
⇐ STATE_CHANGED (, 9ESTOPPED9)

6.6 Event Management:
6.6.1 The Next Event Interaction lets the TSC control the

flow of event reports from the SLM. The command message
initiating this interaction gives the SLM “permission” to place
the next event report into the communication channel. Every
event report sent by the SLM to the TSC must be sent through
the Next Event interaction.

6.6.2 Like every interaction, the Next Event Interaction
message exchange is asynchronous. If no event report message
is waiting for transmission when the SLM receives the NEX-
TEVENT command, the SLM simply waits until an event
report message is needed and then sends it. In other words, the
permission conveyed with a NEXTEVENT command does not
expire.

6.6.3 Note that in most of the interactions in this specifica-
tion, a message transaction signals a state change in one
interaction. In this interaction, however, the event report
signals two state changes: the state change in the interaction
that generated the eventand the state change from NEXT
EVENT REQUESTED to TERMINATED in the Next Event
Interaction.

6.7 Next Event Interaction:
6.7.1 Fig. 8 shows the Next Event state chart. The messages

for the event transfer are described in Table 10.
6.7.2 An SLM should provide an event queue buffer with

sufficient capacity to ensure that no event report will be lost
while the SLM is waiting for the NEXTEVENT command.

Messages in BNF-Syntax

<NEXTEVENT MSG> ::= NEXTEVENT
<EVENT MSG> see 5.4

Message Scenario

⇒ NEXTEVENT
⇐ 08109614221033, 08109614204023, NO_ALARMS

7. Operation Management

7.1 Overview:
7.1.1 This section describes interactions to set up the SLM,

engage in normal operations, and handle exceptions and
emergency stops.

7.1.2 The standard interactions presented in this section
must accommodate a wide variety of laboratory equipment of
varying complexity. Some types of laboratory equipment
process one sample at a time while others handle batches of
samples. Some equipment operates on a single sample at a
time, while others may perform operations on many samples in
parallel with each sample at a different stage in the process.
Furthermore, some instruments can upload and download
programs that define methods while other equipment can
perform single or preprogrammed operations only. A fully
automated laboratory must integrate a wide variety of SLMs
using this LECIS. Thus every SLM must support the interac-
tions presented in this specification, although not all SLMs will
have internal operations that correspond to every state.

7.2 Control Flow Interaction:
7.2.1 The Control Flow interaction state model is a three-

level hierarchical state model and so can be depicted in three
state charts: Figs. 9-11. The top level states in the hierarchy,
OPERATING and ESTOPPED, are shown in Fig. 9. The
OPERATING state is specified as the initial entry state.

7.2.2 Within the OPERATING parent state there are three
substates, as shown in Fig. 10. The CONTROL FLOW substate
is specified as the initial entry substate of the interaction in the

FIG. 8 Next Event State Chart

TABLE 10 Message for Next Event Interaction

Number Message Exchange Old State New State Comment

1 ⇒ NEXTEVENT None NEXT EVENT
REQUESTED

During the
transmission
of the event
queue
additional
event reports
may have to
be queued.

2 ⇐ INTERACTION ID,
EVENT TIME, EVENT
ID, EVENT ARG LISTA

EVENT
TRANSFER
REQUESTED

TERMINATED The SLM
sends the
next
available
event to the
TSC.

A See 4.4.

E 1989 – 98 (2004)

10

OPERATING parent state. This CONTROL FLOW substate is
itself a parent state. Transitions from PAUSED to the correct
substate within the CONTROL FLOW parent state are con-
trolled by the history selector. The history selector is set to be
the substate within CONTROL FLOW that was active upon the
transition from CONTROL FLOW to PAUSING.

7.2.3 The substates of CONTROL FLOW are shown in Fig.
11. The POWERED UP substate is specified as the initial entry
substate of CONTROL FLOW.

7.2.4 To simplify the definition of the SLM behavior and
message exchange in the Control Flow interaction, the three
state charts of the Control Flow interaction state model are
depicted as a single state chart in Fig. 12 and called simply the
Control Flow State Chart. The parent states are drawn as dotted
lines encompassing their substates.

7.3 Behavior in the Control Flow Interaction:
7.3.1 Once the SLM performs the initial steps to establish

communications with the TSC, the SLM is expected to be in
POWERED UP in the Control Flow interaction. Transitions
from POWERED UP and between all other states in these
models must be the result of a command from the TSC or
signaled to the TSC by an event report.

7.3.2 The primary Control Flow state model has two states
that allow for halting operations—PAUSED and ESTOPPED.

TABLE 11 Control Flow State Transitions

Number Old
State

Transition
Event

Command/Event New State Comments

0 POWER-
ED UP

initialize
command
received

INIT INITING SLM starts
to initialize

1 INITING initialization
complete

STATE_CHANGED IDLE Initialization

phase is
completed

2 IDLE set up
command
received

SETUP CONFIG-
URING

SLM starts
to
configure

3 CONFIG-
URING

configuration

complete

STATE_CHANGED NORMAL
OPERA-
TION

Configura-
tion phase
is
completed

4 NORMAL
OPER-
ATION

clear
command
received

CLEAR CLEARING SLM start
to reset its
configur-
ation

5 CLEAR-
ING

clearing
completed

STATE_CHANGED IDLE SLM
config-
uration
is reset

6 any
Control
Flow
state
with
PAUSED

available

pause
command
received

PAUSE PAUSING SLM starts
to suspend
current
operations

7 any
Control
Flow
state
with
PAUSED

available

communica-
tion lost or
an off-
normal
internal
event occurs

STATE_CHANGED PAUSING SLM starts
to suspend
current
operations
to prevent
data or
material
loss

8 PAUS-
ING

a resumable
internal
condition
reached

STATE_CHANGED PAUSED all
operations
are
suspended

9 PAUSED resume
command
received

RESUME state from
which
PAUSED
was
entered

Previous
state is
indicated
by the
history
selector.

10 any
Control
Flow
state

emergency
stop
command
received

ESTOP ESTOPPED TSC
causes
emergency
stop

11 any
Control
Flow
state

internal
condition
detected that

requires the
SLM to
perform an
emergency
stop

STATE_CHANGED ESTOPPED SLM
detects
an
emergency
situation

TABLE 12 Default Message for Interaction State Change
Reporting

Number Message Exchange Old State New State
1, 3, 5,
7, 8, 11

⇐ STATE_CHANGED
(OLD STATE,A NEW
STATE)

state defined by
first parameter

state defined by
second
parameter

A Optional.

TABLE 13 Messages for SLM Initialization

Number Message
Exchange

Old State New State Comment

0 ⇒ INIT POWERED
UP

INITING TSC instructs the SLM

to initialize itself
1 ⇐

STATE_CHANGED
(9INITING9,
9IDLE9)

INITING IDLE SLM indicates the
completion of the
initialization process

TABLE 14 Messages for SLM Configuration

Number Message
Exchange

Old State New State Comment

2 ⇒ SETUP
(CONFIG ID,A

CONFIG
PARAMETER*)

IDLE CONFIG-
URING

TSC configures
the SLM;
configuration
data must be
described in the
SLM’s capability
dataset (2)

3 ⇐
STATE_CHANGED
(9CONFIGURING9,
9NORMAL
OPERATION9)

CONFIGURING NORMAL
OPERATION

SLM signals
completion of
the configuration
process

A Optional.

TABLE 15 Messages for Resetting SLM Configuration

Number Message
Exchange

Old State New State Comment

4 ⇒ CLEAR (CLEAR
TYPEA)

NORMAL
OPERATION

CLEARING The TSC instructs
SLM to return to the

default initial
configuration

5 ⇐
STATE_CHANGED
(9CLEARING9,
9IDLE9)

CLEARING IDLE The SLM indicates
that it has returned
to the default initial
configuration.

A Optional.

E 1989 – 98 (2004)

11

ESTOPPED is only used for emergency situations. The SLM is
neither required nor expected to reach ESTOPPED in a
configuration that preserves material being processed or from
which the SLM can resume operation without manual inter-
vention. The states PAUSING and PAUSED are provided for a
graceful halt to operations.

7.4 Description of States in the Control Flow Interaction:
7.4.1 POWERED UP:
7.4.1.1 Once the SLM establishes communication with the

TSC, the SLM enters the Control Flow interaction in POW-
ERED UP. To indicate this state change the instrument must
send the appropriate state change event to the TSC (see 7.5). In
the POWERED UP state the SLM awaits the command INIT to
starts its initialization.

7.4.1.2 Equipment initializations such as loading the oper-
ating system, warming up, or self-tests may be conducted prior
to or within POWERED UP. However, the SLM may not move

any parts which are considered to be access points (ports) or do
anything that will impact the environments of neighboring
SLMs or laboratory personnel.

7.4.2 INITING —The SLM may perform power-up initial-
izations, such as self-tests or clearing input and output buffers,
that have an impact on public resources and require secondary
interactions. The initialization activity is specific to each SLM.
At the conclusion of the initialization, the SLM should be in its
default configuration and transition to IDLE with an event
report.

7.4.3 IDLE —The SLM has performed its power-up initial-
izations and is waiting for the command SETUP to start the
configuration process.

7.4.4 CONFIGURING :
7.4.4.1 The SLM is set up for operation based on the

SETUP command from the TSC. The SLM configures its
internal workspace for the required work. The TSC or the SLM
may initiate secondary interactions in CONFIGURING.

7.4.4.2 For very simple SLMs, the CONFIGURING state
may be a fall through state. More complex SLMs may have
equipment parameters and operation scripts specified in the
arguments to the SETUP command or the SETUP command
may specify a source of these parameters that is downloaded
separately from the LECIS communication.

7.4.4.3 LECIS provides two alternatives to configure the
SLM: SETUP in the Control Flow state model and the
RUN_OP command, described in 8.2. Arguments of the
SETUP command can be used to specify equipment parameters
or equipment programs, such as method or set up files. It is also
possible for arguments of the RUN_OP command to specify
parameters or select an instrument method file to be run that
differs from the method selected or downloaded in the SETUP
command. Equipment parameters or methods common to a
batch of samples should be defined with the SETUP command
while parameters or methods that vary from sample to sample
should be defined with the arguments of the RUN_OP com-
mand.

7.4.5 NORMAL OPERATION —In this state, the SLM
can accept a sample, perform operations on it, generate results,
and create products. A normally operating SLM is expected to
remain in this state indefinitely, processing until it is com-
manded to clear itself or receives an ESTOP or PAUSE
command. Any secondary interaction can be initiated from
within this state.

7.4.6 CLEARING :
7.4.6.1 The TSC may command the SLM to clear itself to

recover from an off-normal condition, to shut down, or to
return to IDLE and reconfigure with the SETUP command. In
CLEARING, the SLM performs any activities required to clear
itself and return to IDLE.

7.4.6.2 Normal behavior in CLEARING preserves the in-
tegrity of samples in the SLM. However, the SLM manufac-
turer may elect to provide an argument to the CLEAR
command to control the clearing behavior. For example, one
implementation of SLM clearing behavior may direct the SLM
to clear without preserving sample integrity. A second imple-
mentation of clearing behavior may allow the SLM to complete

TABLE 16 Messages for Pausing the SLM

Number Message
Exchange

Old State New State Comment

6 ⇒ PAUSE any state PAUSING TSC instructs the SLM
to pause operations

7 ⇐
STATE_CHANGED
(any state,
9PAUSING9)

any state PAUSING SLM detects an
internal condition
that requires
pausing

8 ⇐
STATE_CHANGED
(9PAUSING9,
9PAUSED9)

PAUSING PAUSED SLM signals that it
suspended operations

TABLE 17 Messages for Resuming Operations

Number Message
Exchange

Old State New State Comment

9 ⇒ RESUME PAUSED state from
which
PAUSING
was
entered

TSC instructs the SLM
to resume operations

TABLE 18 Message for Emergency Stopping the SLM

Number Message
Exchange

Old State New State Comment

10 ⇒ ESTOP any state ESTOPPED TSC instructs the
SLM to perform an
emergency stop.

11 ⇐
STATE_CHANGED
(9ESTOPPED9)

any state ESTOPPED The SLM indicates
that it performed
an emergency
stop.

FIG. 9 SLM Top-Level States

E 1989 – 98 (2004)

12

processing to preserve the integrity of the sample or samples
loaded (the normal behavior).

7.4.7 PAUSING:
7.4.7.1 The states PAUSING and PAUSED are provided to

afford a graceful halt to sample processing. When the SLM
receives a command to pause, it transitions to PAUSING. The
TSC can issue a PAUSE command to the SLM at any time,
unless the SLM is in ESTOPPED. In PAUSING, the SLM
continues to process all ongoing secondary interactions until

each interaction reaches a point where activity may be halted
and resumed at a later time. A resumable point in the secondary
interaction is normally a command-exit state; however, it may
be an event-exit state in which the SLM is performing an
operation that can be paused without jeopardizing the process.
Once all ongoing interactions have reached a resumable point,
the active state in the Control Flow interaction becomes
PAUSED.

7.4.7.2 If the activity in some ongoing secondary interac-
tions cannot be halted without compromising the work in
progress (for example, if the SLM cannot interrupt an activity
in the PROCESSING state), the SLM is expected to complete
the interactions before transitioning to PAUSED. If an imme-
diate halt of the SLM operations is required, instead of PAUSE
the TSC may use the ABORT or ESTOP commands.

7.4.7.3 If the SLM initiates a transition to PAUSING and
PAUSED in response to an off-normal internal event that
prevents the SLM from operating properly, the off-normal
situation must also be reported to the TSC with an alarm
message (see 9.4). The PAUSING and PAUSED states should
not be used in the course of normal operation. In particular, the
PAUSING and PAUSED states should not be used to address
timing issues in SLM control. The LECIS provides command-
exit states in every interaction that should be used to synchro-
nize the control of the SLM.

7.4.8 PAUSED—Once the SLM has halted every ongoing
interaction at a resumable point (for example, when every
secondary interaction has reached a command-exit state), the
SLM transitions to PAUSED in the Control Flow interaction.
Upon receiving the command RESUME the SLM returns to the
Control Flow state from which it entered PAUSING (indicated
by the history selector in the state chart) and continues
processing. Upon receiving the command RESUME, the SLM
also resumes the halted activities in the active state in every
ongoing interaction. There is no provision to communicate the
contents of the history selector to the TSC. The TSC should be
implemented such that it remembers the previously active
state. Alternately, after a RESUME command, the TSC can
query the SLM with a status request (see 8.5).

7.4.9 ESTOPPED:

FIG. 10 Substates of Top-Level State OPERATING

FIG. 11 Substates of CONTROL FLOW State

E 1989 – 98 (2004)

13

7.4.9.1 An emergency stop can be initiated by either the
TSC or the SLM. The top level of the Control Flow state model
provides a one-way transition to ESTOPPED.

7.4.9.2 In case of an emergency, whether self-detected or
indicated by the TSC, the SLM must immediately stop pro-
cessing. Before the SLM transitions to ESTOPPED state, it
should send an appropriate alarm message (9.4) indicating the
error condition if one is available. Receipt of an ESTOP
command or issuance of an event report of a state change to
ESTOPPED requires every secondary interaction to be termi-
nated immediately. In the ESTOPPED state, the SLM must be
in a configuration that does not pose danger to current and
future activities. A transition to ESTOPPED also requires a
concurrent, non-negotiated state change to local control (6.5).

7.4.9.3 LECIS does not allow SLMs to resume operation
from ESTOPPED. For safety reasons, ESTOP was designed to
function system-wide. In other words, all instruments that are
in the same workcell as an estopped instrument must be
estopped as well. The American national Standard for Indus-
trial Robots and Robot Systems Safety Requirements stipulates
that restarting from an emergency stop requires a manual,

deliberate start-up procedure(9). Operator intervention is
required and the Control Flow interaction must be re-entered in
POWERED UP.

7.5 Default Event Report Message for Informing the TSC of
a State Change:

7.5.1 The SLM must send an event report to the TSC when
the active state in an interaction changes due to an action by the
SLM. In some interactions, specific event report syntax is
defined. For example, the transition from ALARM terminating
the Alarm interaction results in the ALARM_OFF event report.
When the event report syntax is not defined, the default event
message, STATE_CHANGED is used with arguments describ-
ing the original and new state. For example, the transition from
PAUSING to PAUSED must be reported to the TSC with a
STATE_CHANGED (“PAUSING”, “PAUSED”) event report
message. When the SLM initiates a secondary interaction, the
STATE_CHANGED message is the first message in the inter-
action and so there is no originating state in the STAT-
E_CHANGED event message arguments. This default event
report message format is used both in primary and secondary
interactions.

FIG. 12 Control Flow State Chart

E 1989 – 98 (2004)

14

Message in EBNF-Syntax

<STATE CHANGED
MSG>

::= STATE_CHANGED <(> [<OLD STATE> <,]
<NEW STATE> <)>

Message Parameter

<NEW STATE> new state
data type: <STRING PARAMETER>
range: pre-defined states from LECIS state

models and states from optional inter-
actions

<OLD STATE> old state
data type: <STRING PARAMETER>
range: pre-defined states from LECIS state

models and states from optional inter-
actions

7.5.1.1 Message Scenario 1:
⇐ STATE_CHANGED (9CONFIGURING9, 9NORMAL OPERATIONS9)

7.5.1.2 Message Scenario 2:
⇐ STATE_CHANGED (, 9ESTOPPED9)

7.5.2 Initializing the SLM through the INITING State—In
POWERED UP, the SLM waits for the command INIT to start
the initialization process. Upon receiving INIT, the SLM
transitions from POWERED UP to INITING. Once the initial-
ization process is completed, the SLM transitions from INIT-
ING to IDLE.

Message in EBNF-Syntax

<INIT MSG> ::= INIT

7.5.2.1 Message Scenario:
⇒ INIT
⇐ STATE_CHANGED (9INITING9, 9IDLE9)

7.5.3 Configuring the SLM through the CONFIGURING
State—Upon receiving SETUP, the SLM transitions from
IDLE to CONFIGURING. The argument list of SETUP may
directly specify the configuration of the SLM or, for more
complex instruments, arguments name a method or configura-
tion file that contains the configuration data. Upon completion
of the configuration process, the SLM transitions from CON-
FIGURING to the NORMAL OPERATION.

Message in EBNF-Syntax

<SETUP MSG> ::= SETUP [<(> <CONFIG ID> [<,> <CONFIG
PARAMETER] <)]

Message Parameter

<CONFIG ID> configuration identifier
data type: <STRING PARAMETER>
range: unspecified

<CONFIG PARAMETER> optional configuration parameter
data type: <DATA STREAM>
range: unspecified

7.5.3.1 Message Scenario 1:
⇒ SETUP
⇐ STATE_CHANGED (9CONFIGURING9, 9NORMAL OPERATION9)

7.5.3.2 Message Scenario 2:
⇒ SETUP (9CALIB 19)
⇐ STATE_CHANGED (9CONFIGURING9, 9NORMAL OPERATION9)

7.6 Clearing the SLM through the CLEARING State—The
CLEAR command causes the SLM to change from NORMAL

OPERATION to CLEARING state. After the clearing opera-
tion is completed, the SLM transitions from CLEARING to
IDLE.

Message in EBNF-Syntax

<CLEAR MSG> ::= CLEAR [<(> <CLEAR TYPE> <)]

Message Parameter

<CLEAR TYPE> type of clear
data type: <MNEMONIC>
range: SOFT clears all operations when

integrity of the work in
progress is secured

HARD no consideration is given to
preserving the state of the
work in progress

7.6.1 Message Scenario 1:
⇒ CLEAR
⇐ STATE_CHANGED (9CLEARING9, 9IDLE9)

7.6.2 Message Scenario 2:
⇒ CLEAR (SOFT)
⇐ STATE_CHANGED (9CLEARING9, 9IDLE9)

7.7 Pausing the SLM:
7.7.1 The PAUSE command is used to pause the SLM’s

operations for an indefinite period of time. After the pausing
period is over, the TSC issues a RESUME command (7.8) to
the SLM to resume its paused operations.

7.7.2 An SLM should initiate a transition to PAUSING if a
communication loss with the TSC occurs. This specification
also allows the SLM to pause in other, self-detected, off-normal
situations. An SLM-initiated transition to PAUSING must be
indicated to the TSC with a STATE_CHANGED event report
(7.5). In addition, when an off-normal internal event is detected
that requires pausing, the SLM must communicate this to the
TSC with an Alarm Interaction (see 9.4) in addition to
reporting the transition to PAUSING.

Message in EBNF-Syntax

<PAUSE MSG> ::= PAUSE

7.7.2.1 Message Scenario:
⇒ PAUSE
⇐ STATE_CHANGED (9PAUSING9, 9PAUSED9)

7.8 Resuming Operations from PAUSED—From the
PAUSED state the TSC can command the SLM to resume
processing with the RESUME command. This command
causes the SLM to return to the previous Control Flow state
from which it entered PAUSING (indicated by the history
selector in the state chart). Resumption of the active state in the
Control Flow interaction indicates that every secondary inter-
action also resumes. If an error occurs in the process of
resuming operation in any interaction, the error should be
reported to the TSC from the re-entered active state using an
alarm message (9.4), not the PAUSED state.

Message in EBNF-Syntax

<RESUME MSG> ::= RESUME

7.8.1 Message Scenario:
⇒ RESUME

7.9 Emergency Stopping the SLM:

E 1989 – 98 (2004)

15

7.9.1 An emergency stop can be initiated by either the TSC
or the SLM. The TSC causes an emergency stop of the SLM’s
operations by issuing an ESTOP command. The SLM performs
an emergency stop if it detects an emergency situation and
signals the transition with the default event report (see 7.5). If
the SLM detects an emergency, it should send an appropriate
alarm message (9.4) describing the emergency prior to transi-
tioning to ESTOPPED.

7.9.2 A transition to ESTOPPED also requires the SLM
change from remote control to local control (see 6.5). Only the
state change to ESTOPPED must be indicated to the TSC; the
change to LOCAL is implied. A transition to ESTOPPED also
requires that every secondary interaction be terminated, which
is also not reported separately to the TSC. While the SLM is in
ESTOPPED, it shall be in local control. Manual intervention is
required to exit ESTOPPED.

Message in EBNF-Syntax

<ESTOP MSG> ::= ESTOP

7.9.2.1 Message Scenario 1:
⇒ ESTOP

7.9.2.2 Message Scenario 2:
⇐ STATE_CHANGED (, 9ESTOPPED9)

8. Sample Loading and Processing

8.1 SLMs carry out processing operations on their inputs.
Separate interactions are defined for discrete steps in the
sample loading and processing operations. The Lock/Unlock
interaction is used to control access to data or material ports of
an SLM. The Lock/Unlock interaction provides explicit syn-
chronization to allow the TSC and SLM to share common
physical or logical areas. The Processing interaction is used to
initiate processing operations. TheItem Available Notification
interaction is provided for the SLM to indicate the availability
of material or data.

8.2 Processing Interaction:
8.2.1 The Processing interaction is used to initiate process-

ing operations. The TSC should only initiate this secondary
interaction when the SLM is in NORMAL OPERATION. To
run multiple operations simultaneously or to convey permis-
sion to run a series of samples, the TSC may initiate multiple
instances of the Processing interaction. The Processing inter-
action is terminated once the requested process is completed or
aborted. To initiate a processing operation, the TSC provides
the SLM with the operation and the necessary arguments in the
RUN_OP command that cause the SLM to enter PROCESS-
ING REQUESTED. The SLM can accept or reject the
RUN_OP command from PROCESSING REQUESTED. Ac-
ceptance is indicated by an event report notifying the TSC that
the SLM has entered the PROCESSING state. The SLM
notifies the TSC with another event report when the internal
processing operation is complete. Messages defining the Pro-
cessing interaction are described in detail in Table 19.

8.2.2 The Processing interaction has a path that allows
reentry of the PROCESSING state with the OP_RESULT event
report. The argument(s) to this event report allows the SLM to
provide data to the TSC when operations in PROCESSING
generate data that will not be available after the PROCESSING
state is exited. SLMs should only use this path through the
interaction when the results from tasks in the PROCESSING
state cannot be stored and retrieved by the TSC (with the
Lock/Unlock interaction) after the Processing interaction is
complete. The SLM’s Capability Dataset describes the SLM-
specific path through the Processing interaction, allowing the
TSC to determine if OP_RESULT event reports are expected.

TABLE 19 Messages for Processing

Number Message
Exchange

Old State New State Comment

1 ⇒ RUN_OP
(COMMAND ID,
COMMAND
ARG LIST,A

START TIME,A

ITEM LISTA)

None PROCESSING
REQUESTED

TSC instructs the
equipment to
perform the
specified
operation

2 ⇐ OP_STARTED PROCESSING

REQUESTED

PROCESSING The SLM
indicates
start of
operation to
the TSC

3 ⇐ OP_RESULT
(RESULT
DATA)

PROCESSING PROCESSING The SLM
generates
results

4 ⇐
OP_COMPLETED

PROCESSING TERMINATED The SLM
indicates
completion of
operation to
TSC

5 ⇐ OP_DENIED
(REJECT
REASON
CODE,A

REJECT
REASON
TEXTA)

PROCESSING

REQUESTED

TERMINATED The SLM rejects
the operation
command

A Optional.

FIG. 13 Processing State Chart

E 1989 – 98 (2004)

16

Messages in EBNF-Syntax

<OP COMPLETED MSG> ::= OP_COMPLETED
<OP STARTED MSG> ::= OP_STARTED
<OP RESULT MSG> ::= OP_RESULT <(> <RESULT DATA LIST>

<)>
<OP REJECTED MSG> ::= OP_DENIED <(> [<REJECT REASON

CODE> <,]
[<REJECT REASON TEXT] <)>

<RUN OP MSG> ::= RUN_OP <(> <COMMAND ID> [<,>
<COMMAND ARGS]

[<,> [<START TIME] [<,> <ITEM LIST]]] <)>

<COMMAND ARG LIST> ::= <(> <COMMAND ARGS> <)>
<RESULT DATA LIST> ::= <(> <RESULT DATA> {<,> <RESULT

DATA>} <)>
<ITEM LIST> ::= <(> <ITEM ID> {<,>< ITEM ID>} <)>

Message Parameter

<ITEM ID> item identifier
data type: <PARAMETER>
range: unspecified

<COMMAND ID> Identifier of the command to be started as
specified in the SLM’s capability dataset
data type: <PARAMETER>
range: unspecified

<COMMAND ARG> command argument as specified in the SLM’s
capability dataset
data type: <DATA STREAM>
range: unspecified

<REJECT REASON CODE> code indicating reason for rejection
data type: <REASON CODE>
range: –00001..–32767

<REJECT REASON TEXT> text describing reason for rejection
data type: <STRING PARAMETER>
range: unspecified

<RESULT DATA> result data, generated during processing
data type: <PARAMETER>
range: unspecified

<START TIME> expected start time of operation
(date & time stamp with format: yyyymmddh-
hmmssss)
example: August 10, 1996, 14:22:10.33
-> 1996081014221033
data type: <INTEGER NUMERIC PARAM-

ETER>
range: unspecified

8.2.2.1 Message Scenario 1:
⇒ RUN_OP (9MIX9)
⇐ OP_STARTED
⇐ OP_RESULT (100, 9mg9, 200, 9mg9)
⇐ OP_COMPLETED

8.2.2.2 Message Scenario 2:

⇒ RUN_OP (9DILUTE9, (9100R9, 921MIN9))
⇐ OP_STARTED
⇐ OP_RESULT (100, 9mg9)
⇐ OP_RESULT (112, 9mg9)
⇐ OP_RESULT (114, 9mg9)
⇐ OP_COMPLETED

8.2.2.3 Message Scenario 3:
⇐ RUN_OP (9SCREEN9, , 1996121108342123, (I1))
⇐ OP_DENIED (–1999, 9LOW RESOURCES9)

8.3 Lock/Unlock Interaction:
8.3.1 The Lock/Unlock interaction is used to control access

to data or material ports of an SLM. The Lock/Unlock
interaction provides explicit synchronization to allow the TSC
and SLM to share common physical or logical areas. Locking
transfers ownership of an SLM port to the TSC. The TSC must
explicitly unlock the port in order to transfer ownership of it
back to the SLM. While the port is locked, the SLM is
prohibited from accessing the port physically or logically. Fig.
14 shows the state chart of the Lock/Unlock interaction. Table
20 describes the messages for each state transition in the
Lock/Unlock interaction.

FIG. 14 Lock/Unlock State Chart

E 1989 – 98 (2004)

17

Messages in EBNF-Syntax

<LOCK REQ MSG> ::= LOCK_REQ <(> <PORT LIST> <)>
<LOCK ACCEPTED
MSG>

::= LOCK_ACCEPTED

<LOCK REJECTED
MSG>

::= LOCK_DENIED <(> [<REJECT REASON
CODE> <,]

[<REJECT REASON TEXT] <)>
<PORT LOCKED MSG> ::= LOCKED
<PORT UNLOCKED
MSG>

::= UNLOCKED

<UNLOCK PORT MSG> ::= UNLOCK_REQ

<PORT LIST> ::=< (> <PORT ID> {<,> <PORT INDEX ID>} <)>
{<,> <(> <PORT ID> {<,> <PORT INDEX ID>} <)>}

Message Parameter

<PORT ID> port identifier as specified in the SLM’s capability
dataset
data type: <PARAMETER>
range: unspecified

<PORT INDEX ID> port index identifier as specified in the SLM’s ca-
pability dataset
data type: <PARAMETER>
range: unspecified

<REJECT REASON
CODE>

code describing reason for transfer rejection

data type: <REASON CODE>
range: –00001..–32767

<REJECT REASON
TEXT>

text describing reason for rejection

data type: <STRING PARAMETER>
range: unspecified

8.3.2 Message Scenario 1:
⇒ LOCK_REQ ((P1, 1, 2), (P2, 3, 5))
⇐ LOCK_ACCEPTED
⇐ LOCKED
⇒ UNLOCK
⇐ UNLOCKED

8.3.3 Message Scenario 2:
⇒ LOCK_REQ ((P1, 1, 2), (P2, 3, 5))
⇐ LOCK_DENIED (–3000, 9PORT ALREADY LOCKED9)

8.4 Item Available Notification Interaction—The SLM may
notify the TSC that an item is available. This interaction is
distinct from the Processing interaction to allow item to be
moved asynchronously with the processing operations. This
interaction involves a single message exchange and, thus, the
initiating message transaction also terminates the interaction.
Fig. 15 illustrates the state chart for the interaction.

Messages in EBNF-Syntax

<ITEM AVAILABLE MSG> ::= ITEM_AVAILABLE <(> <PORT ID> <,>
<ITEM ID>
[<,> [<ITEM CLASS] [<,> <ITEM QUANTITY]])>

Message Parameter

<ITEM ID> item identifier
data type: <PARAMETER>
range: unspecified

<PORT ID> port identifier as specified in the SLM’s capability
dataset
data type: <PARAMETER>
range: unspecified

<PORT INDEX ID> port index identifier as specified in the SLM’s ca-
pability dataset
data type: <PARAMETER>
range: unspecified

8.5 Status Interaction—The Status interaction is used by the
TSC to retrieve status information from the SLM. For example,
it allows the TSC to get information on the status of data and
material ports, equipment inventory, active alarms, interac-
tions, and interaction states. The SLM must process a status
interaction from any defined state, including the ESTOPPED
state. The Status interaction is a secondary interaction. Fig. 16
shows the state chart of the Status interaction.

TABLE 20 Message for Locking/Unlocking Interaction

Number Message
Exchange

Old State New State Comment

1 ⇒ LOCK_REQ
(PORT LIST)

None LOCK
REQUESTED

TSC requests to
lock port(s) on
the SLM

2 ⇐ LOCK_ACCEPTED LOCK
REQUESTED

LOCKING
PORT

SLM accepts
the lock request

and starts
locking the
specified ports

3 ⇐ LOCKED LOCKING LOCKED SLM signals
that the

specified port(s)
are locked

4 ⇒ UNLOCK_REQ LOCKED UNLOCKING TSC requests to
unlock the
previously

locked port(s)
5 ⇐ UNLOCKED UNLOCKING TERMINATED SLM signals the

completion of
the unlocking
process

6 ⇐ LOCK_DENIED
(REJECT REASON

CODE,A REJECT
REASON TEXTA)

LOCKING
REQUESTED

TERMINATED SLM rejects the
lock request
from the TSC

A Optional.

TABLE 21 Messages for the Item Available Notification
Interaction

Number Message
Exchange

Old State New State Comment

1 ⇐
ITEM_AVAILABLE
(PORT ID,
ITEM ID, ITEM
CLASS,A ITEM
QUANTITYA)

NONE TERMINATED SLM notifies
the TSC that
an item is
available

A Optional.

FIG. 15 State Chart for the Item Available Notification Interaction

E 1989 – 98 (2004)

18

Messages in EBNF-Syntax

<STATUS REQ MSG ::= STATUS_REQ <(> (INTERACTION [<,>
<INTERACTION ID LIST]) ?

(INVENTORY [<,>< INVENTORY ITEM
LIST]) ?

(PORT [<,> <PORT LIST]) ?
(ALARM [<,> <ALARM ID LIST]) <)>

<STATUS MSG> ::= STATUS <(> (<INTERACTION STATUS
LIST>) ?

(<INVENTORY ITEM STATUS LIST>) ?
(<PORT STATUS LIST>) ?

(<ALARM ID LIST>) <)>

<NO STATUS MSG> ::= NO_STATUS

<ALARM ID LIST> ::= <ALARM ID> {<,>< ALARM ID> }
<INTERACTION ID LIST> ::= <INTERACTION ID> {<,> <INTERAC-

TION ID> }
<INTERACTION STATUS> ::= <INTERACTION ID> <,> <INTERAC-

TION TYPE> <,>
<INTERACTION STATE> [<,><OPERATION

STATE]
<INTERACTION STATUS LIST>::= <(> <INTERACTION STATUS> <)> {<,>

<(> <INTERACTION STATUS> <)>}
<INVENTORY ITEM> ::= [<ITEM CLASS] [<,> [<ITEM ID]]
<INVENTORY ITEM LIST> ::= <(> <INVENTORY ITEM> <)> {<,> <(>

<INVENTORY ITEM> <)>}
<INVENTORY ITEM STATUS> ::= [<ITEM CLASS] [<,> [<ITEM ID] [<,>

[<ITEM QUANTITY]]]
<INVENTORY ITEM STATUS
LIST>

::= <(> <INVENTORY ITEM STATUS> <)>

{<,> <(> <INVENTORY ITEM STATUS> <)>}
<ITEM QUANTITY> ::= <VALUE> [<,> <UNIT>]
<PORT> ::= <PORT ID> {<,> <PORT INDEX ID>}
<PORT CONTENTS> ::= [<ITEM CLASS] <,> [<ITEM ID] <,>

[<ITEM QUANTITY]
<PORT LIST> ::= <(> <PORT> <)> {<,> <(> <PORT> <)>}
<PORT STATUS> ::= <PORT> <,> [<PORT LOCK STATE] <,>

[<PORT CONDITION] <,>
[<PORT CONTENTS]

<PORT STATUS LIST> ::= <(> <PORT STATUS> <)> {<,> <(>
<PORT STATUS> <)>}

Message Parameter

<ALARM ID> alarm identifier as specified in the SLM’s
capability dataset
data type: <REASON CODE>
range: –00001..–32767

<INTERACTION ID> unique interaction identifier
data type: <INTEGER NUMERIC PARAM-

ETER>
range: unspecified
(see 4.4)

<INTERACTION STATE> current processing state of the interaction
data type: <STRING PARAMETER>
range: unspecified

<INTERACTION TYPE> type of interaction
data type: <STRING PARAMETER>
range: unspecified

<ITEM CLASS> describe item class
data type: <PARAMETER>
range: unspecified

<ITEM ID> item identifier
data type: <PARAMETER>
range: unspecified

<OPERATION STATE> status of an operation within an interaction
data type: <MNENOMIC>
range: ABORTED

BUSY
DEFERRED
DONE
FAILED
PENDING
POSTRUN
PRERUN
READY2RUN
RUNNING

FIG. 16 Status Interaction State Chart

TABLE 22 Messages for Status Request

Number Message
Exchange

Old State New State Comment

1 ⇒ STATUS_REQ

(INTERACTION,
INTERACTION
LISTA)
or
⇒ STATUS_REQ

(INVENTORY,
INVENTORY
ITEM LISTA)
or
⇒ STATUS_REQ

(PORT, PORT
LISTA)
or
⇒ STATUS_REQ

(ALARM,
ALARM ID
LISTA)

None STATUS
REQUESTED

TSC requests the

status of
interactions,
inventory,
or ports

2 ⇐ STATUS
(INTERACTION
STATUS LIST)
or
⇐ STATUS
(INVENTORY
ITEM STATUS
LIST)
or
⇐ STATUS
(PORT STATUS
LIST)
or
⇐ STATUS
(ALARM ID
LIST)

STATUS
REQUESTED

TERMINATED The SLM
provides the
requested status
information
to the TSC

3 ⇐ NO_STATUS STATUS
REQUESTED

TERMINATED SLM signals that
there is no status

information
available for
that request.

A Optional.

E 1989 – 98 (2004)

19

SUSPENDED

<PORT CONDITION> condition of port
data type: <MNEMONIC>
range: OK

ERROR

<PORT ID> port identifier
data type: <PARAMETER>
range: unspecified

<PORT INDEX ID> port index identifier
data type: <PARAMETER>
range: unspecified

<PORT LOCK STATE> current lock state of port
data type: <MNEMONIC>
range: LOCKED

UNLOCKED

<UNIT> measurement unit
data type: <STRING PARAMETER>
range: unspecified

<VALUE> item value
data type: <PARAMETER>
range: unspecified

8.5.1 Message Scenario 1:
⇒ STATUS_REQ (INVENTORY)
⇐ STATUS ((SUPPLY, I101, 100, 9ml9), (SUPPLY, I102, 33, 9ml9))

8.5.2 Message Scenario 2:
⇒ STATUS_REQ (ALARM)
⇐ NO_STATUS

9. Error and Exception Handling

9.1 The LECIS makes several provisions to handle off-
normal situations in the SLM by remote control. The Alarm
interaction and Abort interaction are described in this section.
The Abort interaction shall only be used for error recovery
when the detected error does not jeopardize personnel safety
and cannot result in equipment damage. An emergency stop
(ESTOP) must occur when personnel safety is jeopardized or
equipment damage is possible and may occur in other circum-
stances if necessary. The transition to ESTOPPED is described
in 7.7.

9.2 In addition to these separate error handling mechanisms,
many secondary interactions have a defined path (and event
report) to TERMINATED from the entry state in the interac-
tion. These defined alternative paths are available for the SLM
to handle exceptions. They are especially useful to allow the
SLM to terminate an active interaction that has been created by
the TSC and is “stacked” waiting for execution.

9.3 Abort an Interaction:
9.3.1 The Abort interaction in this section allows the TSC to

terminate any active secondary interaction from any active
state. The secondary interactions are listed in Table 23. The
Abort interaction effectively provides a command path from
every state in each secondary interaction to TERMINATED.
This interaction is provided for automated error recovery short

of an emergency stop. There is no requirement that the SLM
preserve the integrity of any material being processed in an
operation tied to a state of the terminated interaction.

9.3.2 The SLM shall terminate the target of the abort
command as soon as possible without endangering laboratory
personnel or equipment. The SLM must perform an immediate
transition to the TERMINATED state of the interaction from
whatever state was active when the command was received. In

TABLE 23 Messages for Aborting Operations

Number Message
Exchange

Old State New State Comment

1 ⇒ ABORT_REQ
(INTERACTION
ID)

None ABORT
REQUESTED

ABORT allows
the TSC to
abort a
complete
interaction

2 ⇐
ABORT_ACCEPTED

ABORT
REQUESTED

ABORTING The SLM starts
aborting the
interaction

3 ⇐
ABORT_COMPLETED

ABORT
REQUESTED

TERMINATED The SLM
indicates
completion
of abort

4 ⇐
ABORT_DENIED
(REJECT
REASON
CODE,A

REJECT
REASON
TEXTA)

ABORT
REQUESTED

TERMINATED The SLM
rejected the
abort request

A Optional.

TABLE 24 Alarm State Transitions

Number Old State Transition Event New State Comments

1 None Alarm condition is
detected by the
SLM

ALARM SLM has a set of
alarms that it
can detect

2 ALARM Alarm conditions
are no longer
detected by the
SLM

TERMINATED SLM should
periodically check
the existence
of the alarm
condition. The
SLM must check
the alarm
condition upon
receipt of a
status request
(8.5 Status

Interaction)

TABLE 25 Messages for Alarm Indication

Number Message Exchange Old State New State

1 ⇐ ALARM_ON (ALARM ID,
ALARM TEXTA)

None ALARM

2 ⇐ ALARM_OFF (ALARM ID) ALARM TERMINATED
A Optional.

E 1989 – 98 (2004)

20

addition to concluding the Abort interaction, the SLM must
signal the state change in the aborted interaction to the TSC
with an event report.

Message in EBNF-Syntax

<ABORT REQUEST MSG> ::= ABORT_REQ <(> <INTERACTION ID>
<)>

<ABORT ACCEPTED MSG> ::= ABORT_ACCEPTED

<ABORT COMPLETED MSG> ::= ABORT_COMPLETED

<ABORT DENIED MSG> ::= ABORT_DENIED <(> [<REJECT REA-
SON CODE> <,]

[<REJECT REASON TEXT] <)>

Message Parameter

<INTERACTION ID> unique interaction identifier
data type: <INTEGER NUMERIC PARAM-

ETER>
range: unspecified

(see 4.4)

<REJECT REASON CODE> code indication reason for rejection
data type: <REASON CODE>
range: –00001..–32767

<REJECT REASON TEXT> text describing reason for rejection
data type: <STRING PARAMETER>
range: unspecified

9.3.2.1 Message Scenario:
⇒ ABORT_REQ (1996121108342123)
⇐ ABORT_ACCEPTED
⇐ ABORT_COMPLETED
⇐ STATE_CHANGED (9LOCKING9, 9TERMINATED9)

9.3.2.2 Message Scenario 2:
⇒ ABORT_REQ (1996121108342123)
⇐ ABORT_DENIED (–2000, 9PROCESSING STARTED ALREADY9)

9.4 Alarm Interaction:
9.4.1 The Alarm interaction is used to inform the TSC when

an off-normal condition has occurred in the SLM, whether or
not it results in an exception, Abort interaction, or emergency
stop. Every SLM should be able to detect off-normal condi-
tions that can have an adverse impact on the safety of
personnel, affect the quality of processing, prevent the comple-

tion of activity in a state, or damage equipment. If the SLM
detects a condition that requires an emergency stop, it should
send an ALARM_ON event report to the TSC to indicate the
detected condition and transition to the ALARM state before
the transition to ESTOPPED. However it is also possible for
the SLM to send an ALARM_ON event report from ES-
TOPPED.

9.4.2 Fig. 18 shows the Alarm interaction state model. One
Alarm interaction is active for each alarm condition that has
been reported to the TSC. Each detectable alarm condition has
a unique identification, ALARM ID, which is reported as an
argument of the ALARM_ON event report. Standard alarm
identifier codes are defined in 9.5. Each off-normal condition
must only be reported to the TSC once to avoid creating
redundant instances of the Alarm interaction and a cascade of
messages that obstructs the communication channel. The
Alarm interaction is terminated when the SLM detects that the
alarm condition no longer exists and issues an ALARM_OFF
event report. If the SLM sensors do not automatically detect
when an alarm condition has been removed, the SLM should
trigger a check of the condition when it processes a Status
interaction.

Message in EBNF-Syntax

<ALARM ON MSG> ::= ALARM_ON <(> <ALARM ID> [<,>
<ALARM TEXT] <)>

<ALARM OFF MSG> ::= ALARM_OFF <(> <ALARM ID> <)>

Message Parameter

<ALARM ID> alarm identifier as specified in SLM capabil-
ity dataset
data type: <REASON CODE>
range: –00001..–32767

<ALARM TEXT> text describing the alarm
data type: <STRING PARAMETER>
range: unspecified

9.4.2.1 Message Scenario:
⇐ ALARM_ON (–911, 9OUT OF H209)
⇐ ALARM_OFF (–911)

9.5 Alarm ID Codes— Alarm codes are used as arguments
in the ALARM_ON event report. This Specification reserves
the alarm ID codes in the range of –1 to –10000. Alarm ID
codes in this range are defined to describe common conditions
that can be applied to a wide variety of laboratory equipment.
If an SLM is able to detect the appropriate error condition, it
must use the standard alarm ID code in the Alarm interaction.

FIG. 17 Abort State Chart FIG. 18 Alarm State Chart

E 1989 – 98 (2004)

21

The definition of standard alarm codes appears in Table 26.
SLM manufacturers should define equipment-specific alarm ID
codes outside this range.

TABLE 26 Standard Alarm ID Codes

Alarm ID Description

–00001 invalid state
–00002 command not supported

–00010 general operation failed

–00020 invalid configuration

–00030 invalid command format
–00031 missing command
–00032 invalid command argument
–00033 command argument out of range
–00034 missing command argument
–00035 invalid number of command arguments
–00036 invalid argument separator
–00037 invalid data
–00038 invalid data type

E 1989 – 98 (2004)

22

ANNEX

(Mandatory Information)

A1. BASIC DATA TYPES IN EBNF SYNTAX

A1.1 Fig. A1.1 includes theExtended Backus Naur Form
(EBNF) definitions of all data types that are used with the
message definitions in this specification. EBNF descriptions

begin with gross definitions. These descriptions are defined in
terms of successively finer definitions.

FIG. A1.1 EBNF Definitions

E 1989 – 98 (2004)

23

FIG. A1.1 EBNF Definitions (continued)

E 1989 – 98 (2004)

24

FIG. A1.1 EBNF Definitions (continued)

E 1989 – 98 (2004)

25

REFERENCES

(1) Griesmeyer, J. Michael, “General Equipment Interface Definition,”
Appendix A in “Final Report: An Enabling Architecture for Informa-
tion Driven Manufacturing,” SAND97-2076, August 1997. (http://
infoserve.library.sandia.gov/sand_doc/1997/972076.pdf)

(2) Staab, Torsten A., and Kramer, Gary W., “CAALS Initial Device
Capability Dataset,” Version 1.7, NIST Internal Report 6294, August
1998. (www.lecis.org)

(3) Staab, Torsten A., “CAALS High-Level Communication Protocol
(HLCP),” Version 1.11, NIST Internal Report XXXX, April 1996.

(4) Staab, Torsten A., Grandsard, Peter, and Kramer, Gary W., “CAALS
Common Command Set,” Version 1.02, NIST Internal Report XXXX,
April 1996.

(5) Salit, Marc L., Griesmeyer, J. Michael, “System Ready Behaviors for

Integration,” Laboratory Robotics and Automation, Volume 9, 1997,
pp. 133-118.

(6) Wirth, N., “What Can We Do About the Unnecessary Diversity of
Notation for Syntatic Definitions,” Communications of the ACM,
Volume 20, Number 11, 1977, pp. 822-823.

(7) Salit, Marc L., Guenther, Franklin R., Kramer, Gary W., Griesmeyer,
J. Michael, “Integrating Automated Systems with Modular Architec-
ture,” Analytical Chemistry, Volume 66, 1994, pp. 361A-367A.

(8) Harel, D., “Statecharts: A Visual Formalism for Complex Systems,”
Science of Computer Programming, Volume 8, 1987, pp. 231-274.

(9) “ANSI/RIA R15.06-1992, Standard for Industrial Robots and Robot
Systems Safety Requirements,” American National Standards Insti-
tute, 11 West 42nd Street, New York, NY 10036.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned
in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk
of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and
if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards
and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the
responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should
make your views known to the ASTM Committee on Standards, at the address shown below.

FIG. A1.1 EBNF Definitions (continued)

E 1989 – 98 (2004)

26

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,
United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above
address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website
(www.astm.org).

E 1989 – 98 (2004)

27

