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Standard Guide for
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superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

INTRODUCTION

Test method standards are required to contain precision and bias statements. This guide contains a
glossary that explains various terms that often appear in these statements as well as an example
illustrating such statements for a specific set of data. Precision and bias statements are shown to vary
according to the conditions under which the data were collected. This guide emphasizes that the error
model (an algebraic expression that describes how the various sources of variation affect the
measurement) is an important consideration in the formation of precision and bias statements.

1. Scope

1.1 This guide covers terminology useful for the preparation
and interpretation of precision and bias statements.

1.2 In formulating precision and bias statements, it is
important to understand the statistical concepts involved and to
identify the major sources of variation that affect results.
Appendix X1 provides a brief summary of these concepts.

1.3 To illustrate the statistical concepts and to demonstrate
some sources of variation, a hypothetical data set has been
analyzed in Appendix X2. Reference to this example is made
throughout this guide.

1.4 It is difficult and at times impossible to ship nuclear
materials for interlaboratory testing. Thus, precision statements
for test methods relating to nuclear materials will ordinarily
reflect only within-laboratory variation.

2. Referenced Documents

2.1 ASTM Standards:
E 177 Practice for Use of the Terms Precision and Bias in

ASTM Test Methods2

E 691 Practice for Conducting an Interlaboratory Study to
Determine the Precision of a Test Method2

2.2 ANSI Standard:
ANSI N15.5 Statistical Terminology and Notation for

Nuclear Materials Management3

3. Terminology for Precision and Bias Statements

3.1 Definitions:

3.1.1 accuracy (seebias)—(1) bias. (2) the closeness of a
measured value to the true value. (3) the closeness of a
measured value to an accepted reference or standard value.

3.1.1.1 Discussion—For many investigators, accuracy is
attained only if a procedure is both precise and unbiased (see
bias). Because this blending of precision into accuracy can
result occasionally in incorrect analyses and unclear statements
of results, ASTM requires statement on bias instead of accu-
racy.4

3.1.2 analysis of variance (ANOVA)—the body of statistical
theory, methods, and practices in which the variation in a set of
data is partitioned into identifiable sources of variation.
Sources of variation may include analysts, instruments,
samples, and laboratories. To use the analysis of variance, the
data collection method must be carefully designed based on a
model that includes all the sources of variation of interest. (See
Example, Appendix X2.1.1)

3.1.3 bias (see accuracy)—a constant positive or negative
deviation of the method average from the correct value or
accepted reference value.

3.1.3.1 Discussion—Bias represents a constant error as
opposed to arandom error.

(a) A method bias can be estimated by the difference (or
relative difference) between a measured average and an ac-
cepted standard or reference value. The data from which the
estimate is obtained should be statistically analyzed to establish
bias in the presence of random error. A thorough bias investi-
gation of a measurement procedure requires a statistically
designed experiment to repeatedly measure, under essentially
the same conditions, a set of standards or reference materials of
known value that cover the range of application. Bias often
varies with the range of application and should be reported
accordingly.

1 This guide is under the jurisdiction of ASTM Committee C-26 on Nuclear Fuel
Cycle and is the direct responsibility of Subcommittee C26.06 on Statistical
Applications.

Current edition approved May 15, 1992. Published July 1992.
2 Annual Book of ASTM Standards, Vol 14.02.
3 American National Standards Institute, 11 W. 42nd St., 13th Floor, New York,

NY 10036. 4 Refer toForm and Style for ASTM Standards, 8th Ed., 1989, ASTM.
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(b) In statistical terminology, an estimator is said to be
unbiased if its expected value is equal to the true value of the
parameter being estimated. (See Appendix X1.)

(c) The bias of a test method is also commonly indicated by
analytical chemists aspercent recovery. A number of repeti-
tions of the test method on a reference material are performed,
and an average percent recovery is calculated. This average
provides an estimate of the test method bias, which is multi-
plicative in nature, not additive. (See Appendix X2.)

(d) Use of a single test result to estimate bias is strongly
discouraged because, even if there were no bias, random error
alone would produce a nonzero bias estimate.

3.1.4 coeffıcient of variation—seerelative standard devia-
tion.

3.1.5 confidence interval—an interval used to bound the
value of a population parameter with a specified degree of
confidence (this is an interval that has different values for
different random samples).

3.1.5.1 Discussion—When providing a confidence interval,
analysts should give the number of observations on which the
interval is based. The specified degree of confidence is usually
90, 95, or 99 %. The form of a confidence interval depends on
underlying assumptions and intentions. Usually, confidence
intervals are taken to be symmetric, but that is not necessarily
so, as in the case of confidence intervals for variances.
Construction of a symmetric confidence interval for a popula-
tion mean is discussed in Appendix X3.

It is important to realize that a given confidence-interval estimate
either does or does not contain the population parameter. The degree of
confidence is actually in the procedure. For example, if the interval (9,
13) is a 90 % confidence interval for the mean, we are confident that the
procedure (take a sample, construct an interval) by which the interval
(9, 13) was constructed will 90 % of the time produce an interval that
does indeed contain the mean. Likewise, we are confident that 10 % of
the time the interval estimate obtained will not contain the mean. Note
that the absence of sample size information detracts from the usefulness
of the confidence interval. If the interval were based on five observa-
tions, a second set of five might produce a very different interval. This
would not be the case if 50 observations were taken.

3.1.6 confidence level—the probability, usually expressed as
a percent, that a confidence interval will contain the parameter
of interest. (See discussion ofconfidence intervalin Appendix
X3.)

3.1.7 error model—an algebraic expression that describes
how a measurement is affected by error and other sources of
variation. The model may or may not include a sampling error
term.

3.1.7.1 Discussion—A measurement error is an error attrib-
utable to the measurement process. The error may affect the
measurement in many ways and it is important to correctly
model the effect of the error on the measurement.

(a) Two common models are the additive and the multiplicative
error models. In the additive model, the errors are independent of the
value of the item being measured. Thus, for example, for repeated
measurements under identical conditions, the additive error model
might be

Xi 5 µ 1 b 1 e i (1)

where:

Xi 5 the result of theith measurement,
µ 5 the true value of the item,
b 5 a bias, and
ei 5 a random error usually assumed to have a normal

distribution with mean zero and variances2.

In the multiplicative model, the error is proportional to the true
value. A multiplicative error model for percent recovery (seebias)
might be:

Xi 5 µbei (2)
and a multiplicative model for a neutron counter measurement might

be:

Xi 5 µ 1 µb1 µ · e i

5 µ~1 1 b 1 e i! (3)
( b) Clearly, there are many ways in which errors may affect a final

measurement. The additive model is frequently assumed and is the
basis for many common statistical procedures. The form of the model
influences how the error components will be estimated and is very
important, for example, in the determination of measurement uncer-
tainties. Further discussion of models is given in the Example of
Appendix X2 and in Appendix X4.

3.1.8 precision—a generic concept used to describe the
dispersion of a set of measured values.

3.1.8.1 Discussion—It is important that some quantitative
measure be used to specify precision. A statement such as,
“The precision is 1.54 g” is useless. Measures frequently used
to express precision arestandard deviation, relative standard
deviation, variance, repeatability, reproducibility, confidence
interval, andrange. In addition to specifying the measure and
the precision, it is important that the number of repeated
measurements upon which the precision estimated is based also
be given. (See Example, Appendix X2.)

(a) It is strongly recommended that a statement on precision of a
measurement procedure include the following:

(1) A description of the procedure used to obtain the data,
(2) The number of repetitions,n, of the measurement

procedure,
(3) The sample mean and standard deviation of the measure-

ments,
(4) The measure of precision being reported,
(5) The computed value of that measure, and
(6) The applicable range or concentration.

The importance of items (3) and (4) lies in the fact that with these a
reader may calculate a confidence interval or relative standard deviation
as desired.

(b) Precision is sometimes measured by repeatability and reproduc-
ibility (see Practice E 177, and Mandel and Laskof(3)). The ANSI and
ASTM documents differ slightly in their usages of these terms. The
following is quoted from Kendall and Buckland(2):

“In some situations, especially interlaboratory comparisons,preci-
sion is defined by employing two additional concepts:repeatabilityand
reproducibility. The general situation giving rise to these distinctions
comes from the interest in assessing the variabilitywithin several
groups of measurements andbetweenthose groups of measurements.
Repeatability, then, refers to the within-group dispersion of the
measurements, whilereproducibility refers to the between-group dis-
persion. In interlaboratory comparison studies, for example, the inves-
tigation seeks to determine how well each laboratory can repeat its
measurements (repeatability) and how well the laboratories agree with
each other (reproducibility). Similar discussions can apply to the
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comparison of laboratory technicians’ skills, the study of competing
types of equipment, and the use of particular procedures within a
laboratory. An essential feature usually required, however, is that
repeatability and reproducibility be measured as variances (or standard
deviations in certain instances), so that both within- and between-group
dispersions are modeled as a random variable. The statistical tool useful
for the analysis of such comparisons is the analysis of variance.”

( c) In Practice E 177 it is recommended that the termrepeatability
be reserved for the intrinsic variation due solely to the measurement
procedure, excluding all variation from factors such as analyst, time
and laboratory and reservingreproducibility for the variation due to all
factors including laboratory. Repeatability can be measured by the
standard deviation,s r, of n consecutive measurements by the same
operator on the same instrument. Reproducibility can be measured by
the standard deviation,sR, of mmeasurements, one obtained from each
of m independent laboratories. When interlaboratory testing is not
practical, the reproducibility conditions should be described.

(d) Two additional terms are recommended in Practice E 177. These
are repeatability limitand reproducibility limit. These are intended to
give estimates of how different two measurements can be. The
repeatability limit is defined as 1.96=2 s r, and the reproducibility
limit is defined as 1.96=2 s R, wheresr is the estimated standard
deviation associated with repeatability, andsR is the estimated standard
deviation associated with reproducibility. Thus, if normality can be
assumed, these limits represent 95 % limits for the difference between
two measurements taken under the respective conditions. In the
reproducibility case, this means that88approximately 95 % of all pairs
of test results from laboratories similar to those in the study can be
expected to differ in absolute value by less than 1.96=2 s R.” It is
important to realize that if a particularsR is a poor estimate ofsR, the
95 % figure may be substantially in error. For this reason, estimates
should be based on adequate sample sizes.

3.1.9 propagation of variance—a procedure by which the
mean and variance of a function of one or more random
variables can be expressed in terms of the mean, variance, and
covariances of the individual random variables themselves
(Syn.variance propagation, propagation of error).

3.1.9.1 Discussion—There are a number of simple exact
formulas and Taylor series approximations which are useful
here(4, 5).

3.1.10 random error—(1) the chance variation encountered
in all measurement work, characterized by the random occur-
rence of deviations from the mean value. (2) an error that
affects each member of a set of data (measurements) in a
different manner.

3.1.11 random sample (measurements)—a set of measure-
ments taken on a single item or on similar items in such a way
that the measurements are independent and have the same
probability distribution.

3.1.11.1Discussion—Some authors refer to this as a simple
random sample. One must then be careful to distinguish
between a simple random sample from a finite population ofN
items and a simple random sample from an infinite population.
In the former case, a simple random sample is a sample chosen
in such a way that all samples of the same size have the same
chance of being selected. An example of the latter case occurs
when taking measurements. Any value in an interval is
considered possible and thus the population is conceptually
infinite. The definition given in 3.1.11 is then the appropriate
definition. (Seerepresentative sampleand Appendix X5.)

3.1.12 range—the largest minus the smallest of a set of
numbers.

3.1.13 relative standard deviation (percent)— the sample
standard deviationexpressed as a percent of the sample mean.
The %RSD is calculated using the following equation:

%RSD5 100
s

| x̄ | (4)

where:
s 5 sample standard deviation and
x̄ 5 sample mean.

3.1.13.1Discussion—The use of the %RSD (or RSD(%)) to
describe precision implies that the uncertainty is a function of
the measurement values. An appropriate error model might
then beX i 5 µ(1 + b + ei). (See Example, Appendix X2.)
Some authors use RSD for the ratio,s/ | x |, while others call
this thecoeffıcient of variation. At times authors use RSD to
mean %RSD. Thus, it is important to determine which meaning
is intended when RSD without the percent sign is used. The
recommended practice is %RSD5 100 (s/| x̄ |) and RSD5 s/
| x̄ |.

3.1.14 repeatability—see 3.1.8.1
3.1.15 representative sample—a generic term indicating

that the sample is typical of the population with respect to some
specified characteristic(s).

3.1.15.1 Discussion—Taken literally, a representative
sample is a sample that represents the population from which
it is selected. Thus,88representative sample” has gained con-
siderable colloquial acceptance in discussions involving the
concepts of sampling. However, its use is avoided by most
sampling methodologists because the concept of representative
does not lend itself readily to definition or theoretical treat-
ment. In particular, the concept is almost meaningless in
describing a sample or its method of selection (see ANSI
N15.5). Kendall and Buckland(2) suggest:88On the whole, it
seems best to confine the word8representative’ to samples
which turn out to be so, however chosen, rather than apply it to
those chosen with the objective of being representative.”88

Representative sample” is not synonymous with88random
sample.” A random sample from a well-mixed material is
probably representative; a random sample from an inhomoge-
neous material probably is not. It is likely many scientists mean
random sample when using the term representative sample. If
so, then the termrandom sampleshould be used to avoid
possible confusion. In Appendix X5, an example relating to
random and representative samples is given.

3.1.16 reproducibility—see 3.1.8.1.
3.1.17 standard deviation—the positive square root of the

variance.
3.1.17.1Discussion—The use of the standard deviation to

describe precision implies that the uncertainty is independent
of the measurement value.

(a) An appropriate error model might beXi 5 µ + b + ei.
(See Example, Appendix X2.)

(b) The practice of associating the6 symbol with standard
deviation (or RSD) is not recommended. The6 symbol
denotes an interval. The standard deviation is not an interval
and it should not be treated as such. If the6 notation is used as
in, 88The fraction of uranium was estimated as 0.886 0.01,” a
footnote should be added to clearly explain what is meant. Is
0.01 one standard deviation, two standard deviations, the
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standard deviation of the mean, or something else? Is the
interval a confidence interval?

3.1.18 standard deviation of the mean (sample)— the
samplestandard deviationdivided by the square root of the
number of measurements used in the calculation of the mean
(Syn.standard error of the mean).

3.1.18.1Discussion—The equation for standard deviation
of the mean is

sx̄ 5
s

=n
(5)

where:
s x̄ 5 standard deviation of the mean of a set of measure-

ments,
s 5 standard deviation of the set, and
n 5 number of measurements in the set.

3.1.19 systematic error—the term systematic error should
not be used unless defined carefully.

3.1.19.1Discussion—Some consider systematic error as a
synonym for bias and treat it as a constant, whereas others
make a distinction between the two terms. Some publications
have used systematic error to refer to both a fixed and a random
error. If the term is used, it should be clearly defined,
preferably by specifying the error model. (Seebias and
Example, X2.1.1.)

3.1.20 uncertainty—a generic term indicating the inability
of a measurement process to measure the correct value.

3.1.20.1Discussion—Uncertainty is a concept which has
been used to encompass both precision and bias. Thus, one
measurement process (or a set of measurements based on the
process) is sometimes referred to as88more uncertain” than
another process. But, just as with precision, it is important that
a quantitativemeasurebe used to specify uncertainty. Thus, a
phrase like,88The uncertainty is 5.2 units,” should be avoided.
Unfortunately, no single quantitative measure to specify uncer-
tainty is universally accepted. Thus,88the quantification of
uncertainty is itself an uncertain undertaking” (ANSI N15.5).

Seeprecisionandbias for preferred terms and Ku(6) for additional
discussion.

3.1.21 variance (sample)—a measure of the dispersion of a
set of results. Variance is the sum of the squares of the
individual deviations from the sample mean divided by one
less than the number of results involved.

3.1.21.1Discussion—The equation that expresses this defi-
nition is as follows:

s2 5
1

n 2 1 (
i 5 1

n

~xi 2 x̄!2 (6)

where:
s2 5 sample variance,
n 5 number of results obtained,
xi 5 ith individual result, and
x̄ 5 sample mean

S x̄ 5
1
n (

i 5 1

n

xiD
.

The following is an equation that is sometimes used to calculate
sample variance:

s2 5
1

n 2 1 @( xi
2 2 nx̄2# (7)

Although this equation is mathematically exact, in practice it can
lead to appreciable errors because of computer round-off problems.
This can occur especially if the %RSD is small. The definition formula
is, in general, to be preferred. To be useful, the variance must be based
on results that are independent and identically distributed. (See Ex-
ample, X2.1.1.)

4. Significance and Use

4.1 To describe the uncertainties of a standard test method,
precision and bias statements are required.4 The formulation of
these statements has been addressed from time to time, and at
least two standards practices (Practices E 177 and E 691) have
been issued. The 1986Compilation of ASTM Standard Defini-
tions (1)5 devotes several pages to these terms.

4.2 ANSI N15.5 attempts to provide“ a standard on statis-
tical terminology and notation [that] can benefit communica-
tion” among nuclear materials managers. Precision, accuracy,
and bias are all discussed. Although these various documents
are quite valuable, a simpler document written for analysts
appears needed. The intent of this guide is to help analysts
prepare and interpret precision and bias statements. It is
essential that, when the terms are used, their meaning should be
clear and easily understood.

4.3 Appendix X1 provides the theoretical foundation for
precision and bias concepts and Practice E 691 addresses the
problem of sources of variation. To illustrate the interplay
between sources of variation and formulation of precision and
bias statements, a hypothetical data set is analyzed in Appendix
X2. This example shows that depending on how the data was
collected, different precision and bias statements are possible.
Reference to this example will be found throughout this guide.

4.4 There has been much debate inside and outside the
statistical community on the exact meaning of some statistical
terms. Thus, following a number of the terms in Section 3 is a
list of several ways in which that term has been used. This
listing is not meant to indicate that these meanings are
equivalent or equally acceptable. The purpose here is more to
encourage clear definition of terms used than to take sides. For
example, use of the termsystematic erroris discouraged by
some. If it is to be used, the reader should be told exactly what
is meant in the particular circumstance.

4.5 This guide is intended as an aid to understanding the
statistical concepts used in precision and bias statements. There
is no intention that this be a self-contained introduction to
statistics. Since many analysts have no formal statistical
training, it is advised that a trained statistician be consulted for
further clarification if necessary.

5. Precision and Bias Considerations

5.1 With regard to precision and accuracy, Kendall and
Buckland(2) include this generic statement in their dictionary:

“In exact usage precision is distinguished from accuracy.
The latter refers to closeness of an observation to the quantity

5 The boldface numbers in parentheses refer to the list of references at the end of
this guide.
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intended to be observed. Precision is a quality associated with
a class of measurements and refers to the way in which
repeated observations conform to themselves; and in a some-
what narrower sense refers to the dispersion of the observa-
tions, or some measure of it, whether or not the mean value
around which the dispersion is measured approximates to the
8true’ value.”

5.2 A fundamental question is, “What sources of measure-
ment variation are being estimated?” The measurement should
be taken in such a way as to include all the desired sources of
variation. The results should be stated so that it is clear which
sources of variation have been included and which measure of
precision is used. It is best to report precision and bias in the
most complete manner possible so that the reader can properly
interpret the results. Statements such as“ The precision is 1.54
g” are useless. (See 3.1.8,precision, for a discussion of what is
desired.)

5.3 It is essential to realize that measurements are subject to
error and that the ways in which the errors affect the measure-
ments are important. This is discussed in the sections on error
models (3.1.7 and Appendix X4). It is only in the presence of
a specified error model that such concepts as precision, bias,
random error, and systematic error become completely mean-
ingful. The error model describes how the different sources of
variation enter into the measurement process. Once the model
is specified, these generic concepts should be defined relative
to the model and their value estimated. Enough information
should be given to allow proper statistical evaluation of the
resultant estimates.

6. Keywords

6.1 bias; error models; precision; statistics

APPENDIXES

(Nonmandatory Information)

X1. CONCEPTS OF STATISTICS

X1.1 Parameters are constants used to index a family of
distributions. The family of normal distributions, for example,
is indexed by the mean, µ, and the standard deviation,s.
Specifying values for these two constants yields a particular
member of the family. Of particular interest is the estimation of
the parameters by means of a random sample,X1, . . ., Xn, of
sizen. We use capital letters to denote random variables and
corresponding lower-case letters for their realizations, so that
Xi is the symbol for thei th sample value (before the sample is
taken) andxi is the actual observed value ofXi. A (simple)
random sample means that theX i are statistically independent
and identically distributed.

X1.2 To estimate a parameteru, a functionT 5 f (X1, . . .,
Xn) of the sample values is used.T is said to be a statistic and
is a random variable. More specifically,T is an estimator ofu.
Use the observed values of the sample to get an estimate,t 5 f
(x 1, . . ., xn), of u that is a number rather than a random
variable. If E (T) denotes the population average or expected

value of T, E ( T) − u is the bias inT, andT is an unbiased
estimator ofu only if E (T) 5 u. Accuracy is a general term
referring to the closeness of a measured value to the“ true”
value. One measure of accuracy is bias. Another measure is the
absolute value of the bias. In practice, one does not know the
true value ofu, so the bias is estimated by using a reference
value ofu or an accepted or standard or target value in place of
u. The bias is then described as relative to this reference value.
Precision is a general term used to describe the dispersion
(scatter, variability) in an estimator. There are many measures
of precision of which the variance,E (T − E (T))2, and its
positive square root, the standard deviation, are just two. A
measure that combines precision and bias is the mean square
error,E (T − u) 2, which is equal to the variance plus the square
of the bias.

NOTE X1.1—These and many other statistical concepts are more fully
explained in Ref(7).

X2. EXAMPLE OF STATISTICAL CONCEPTS AND SOURCES OF VARIATION

X2.1 The following example illustrates that data from a
measurement procedure should never be merely collected.
Factors of interest—time, laboratory, analyst, instrument,
calibration—that may affect the results should first be identi-
fied and an experiment designed to allow estimation of the
effects of these factors over the appropriate range of values.

X2.1.1 Example—Write a precision and bias statement
based on the following 24 hypothetical test measurements on a
material whose reference value is µ5 64.23 g.

Column
Row 1 2 3 4

1 53 67 64 44
2 61 80 82 55
3 57 86 67 38
4 66 71 60 53
5 45 74 52 59
6 84 66 65 57

X2.1.2 How these data are analyzed and the nature of the
precision and bias statement associated with the measurement
procedure depend on how the data were collected and what
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assumptions on error models and probability distributions are
made. For simplicity, all errors will be assumed to have a
normal probability distribution. Of course, in practice this
should be verified.

X2.1.3 Consider the following data collection possibilities:
X2.1.3.1 Case 1—All 24 measurements come from the

same analyst using the same instrument on the same day. The
results are assumed to be statistically independent. Thus, the 24
results represent a simple random sample (see discussion under
random sample(measurements)) from a single population.

X2.1.3.2 Case 2—The measurements come from the same
analyst using the same instrument on four successive Mondays,
denoted by the four columns. The results within each column
are assumed to be statistically independent. Thus, the measure-
ments represent four simple random samples of size six from
four populations. For later discussions, it is assumed that
whatever effect is experienced on Mondays influences all
measurements within the week. (The four columns could also
represent four different laboratories.)

X2.1.3.3 Case 3—The measurements come from six differ-
ent analysts (the six rows) each working on a different
instrument and each making one run on each of four successive
Mondays. Then the results might represent 24 random samples
of size 1 from 24 populations.

X2.1.4 Clearly there are many other collection possibilities
involving such considerations as calibration, time of day,
season of year, different analysts on the same instrument, or the
same analyst on different instruments. In each of these cases
different sources of variation may affect the data. In Case 1, the
only source of variation would appear to be measurement
random error; in Case 2 there may be an additional source of
variation because of a weekly effect. The possible sources of
variation in Case 3 include time and analyst/instrument. The
reader might refer to Practice E 691 for a fuller discussion of
this topic. (Of course, some of the above-mentioned sources of
variation may contribute little or nothing to the total variation.
One of the functions of a statistically designed experiment is to
identify and quantify the major sources of variation.)

X2.1.5 Consider Case 1 in which only random error affects
the results. The following statistics are easily calculated:

Sample size (n) 24
Sample mean (x̄) 62.8 g
Bias estimate (x̄ − µ) −1.5 g (see Note)
Range (high − low) 48.0 g
Standard deviation (s) 12.6 g
%RSD 20 %
Standard deviation of the mean 2.6 g

NOTE X2.1—A simple statistical test shows that this value is not
significantly different from zero at any reasonable significance level.
Hence, the data do not support a hypothesis of nonzero bias.

X2.1.5.1 If the following additive error model is assumed,

Xi 5 µ 1 b 1 e i i
5 1, 2, . . . 24,ei

; ~0, s 2!,

5 64.231 b 1 e i (X2.1)

the data support the hypothesisb 5 0 with an estimated
random error variance,s2, of (12.6 g)2. (The symbol;(µ, s2),
indicates thate i is a random variable with mean µ and variance

s2.) Had a multiplicative error model been appropriate,

Xi 5 µ~1 1 b 1 e i! i
5 1, 2, . . . 24,ei

; ~0, s 2!,

5 64.23~1 1 b 1 e i! (X2.2)

then the random error standard deviation,s, would be
estimated by the RSD expressed as a fraction, 0.201. Again, the
hypothesisb 5 0 would be supported.

X2.1.6 A test method statement on precision and bias in the
latter case might then be as follows:

X2.1.6.1 The test method was independently run 24 times in
a row by the same analyst on the same instrument under
virtually the same conditions on a material whose reference
value was 64.23 g. The sample mean of the 24 measurements
was 62.8, which is not indicative of bias. The precision
(repeatability) of the test method, as measured by the %RSD,
was estimated to be 20 %. (Had the data come from 24
independent laboratories, the 20 % would have been a measure
of reproducibility.)

X2.1.6.2 The reader will probably feel more comfortable if
several materials that covered a range of interest were mea-
sured and if some evidence of verification of assumptions (for
example, normal errors, multiplicative error model) were
presented in the write-up.

X2.1.6.3 In Case 2 an appropriate error model might be:

Xij 5 µ 1 Wi 1 eij i
5 1, . . ., 4,j
5 1, . . ., 6,

5 64.231 ~Wi 1 eij ! (X2.3)

where:
Xij 5 test result of thejth run in theith week,
Wi 5 effect due to theith week (assume Wi is a normal

random variable with mean zero and common vari-
ances2

w), and
eij 5 random error effects (assume thee ij are also normal

random variables with mean zero and common vari-
ances 2

e).
It is assumed that theWi and theeij are mutually indepen-

dent.
X2.1.7 A precision and bias statement should include infor-

mation on how the results were affected by the weekly effect.
A one-way ANOVA yields the following estimates ofs2

w and
s2

e, respectively:

sw
2 5 74.075 ~8.61! 2 and (X2.4)

se
2 5 100.905 ~10.04! 2 (X2.5)

Thus, the variance of an individual result is:

Var~X! 5 s w
2 1 se

2

5 174.97

5 ~13.23! 2 (X2.6)

X2.1.7.1 This result is greater than the (12.6 g)2 obtained in
Case 1. The ANOVA shows that there is a statistically
significant weekly effect, that is, not all weeks have the same
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mean. (In a real situation one might want to discover the cause
of this effect and remove it.) This weekly effect represents a
bias or systematic error that varies from week to week. It is
being assumed that the effect remains constant within a week.
This would need to be verified. Perhaps it could be due to a
weekly calibration. (As mentioned earlier, the columns might
represent data from different laboratories. Thensw measures
interlaboratory variation.)

X2.1.7.2 A statement of precision and bias for this case
might be the test method was run by the same analyst on the
same instrument six times on each of four successive Mondays
on a material whose reference value was 64.23 g. A statistically
significant bias that varied from week to week was found. An
ANOVA yielded the following estimates of variances of the
weekly and random error effects, respectively:

sw
2 5 74.075 ~8.61! 2 andse

2 5 100.905 ~10.04!2 (X2.7)

X2.1.7.3 The analysis of Case 3 requires a two-way
ANOVA and will not be discussed here. Suffice it to say that
the data allow estimation of the effects from different analysts/
instruments and time, as well as the random effects.

X2.1.8 Additional Information:
X2.1.8.1 If normality is assumed, a 95 % confidence inter-

val (see Appendix X3) for the mean of the population in Case
1 is:

62.86 2.07~12.6/=24! or ~57.4, 68.1! (X2.8)

X2.1.8.2 This interval contains the reference value. How-
ever, if just the fourth week’s data were available, a 95 %
confidence interval for the mean of that population would be:

51.06 2.57~8.22/=6! or ~42.4, 59.6! (X2.9)

This interval does not contain the reference value, thus
supporting the conclusion that there is a weekly effect.

X3. CONFIDENCE INTERVAL

X3.1 Construct a 100(1 −a)% symmetric confidence inter-
val for a population mean, µ.

X3.1.1 Assumption— The population of values under con-
sideration has a normal (Gaussian) distribution with mean µ
and standard deviations.

X3.2 Consider a random sample ofn measurements. LetX̄
andSbe the sample mean and standard deviation, respectively.
These are random variables; they are estimators of µ ands,
respectively. Lettk,a/2 be the upper 100(1 −a/2)th percentile of
the Student’st-distribution fork 5 n − 1 degrees of freedom.
Then,

X̄ 6 tk,a/2S/=n (X3.1)

is a 100(1 −a)% confidence interval estimator for the
population mean, µ. Of all possible such intervals (based on
random samples of sizen) that could be obtained, 100(1 −a)%
of them will indeed contain µ; 100a % will not.

X3.2.1 Now suppose that then measurements have been
obtained. Let x̄ and s be the observed sample mean and
standard deviation. These are estimates. Then,

~x̄ 2 tk,a/2s/=n, x̄ 1 t k,a/2s/=n! (X3.2)

is a 100(1 −a)% confidence interval estimate of µ. This
interval is fixed. It either contains µ or it does not.

X3.2.2 If n 5 1, this procedure does not work becauses is
not defined. In this case an independent estimate of the
population standard deviation,s, must be obtained. Call this
estimateŝ . Let k be the degrees of freedom on which this
estimate is based. Then iftk,a/2 is the appropriatet-value fora
andk degrees of freedom,

~x 2 tk,a/2ŝ, x 1 t k,a/2ŝ! (X3.3)

is the desired confidence interval.

X3.2.3 If s is known, the normal probability values may be
used in place of thet-distribution values in X3.2.1 and
X3.2.2.Then, for example, a 100(1 −a)% confidence interval
for µ based on a single determination isx 6 za/2s, whereza/2

comes from the normal probability table.

X4. ERROR MODELS

X4.1 The importance of the model can be demonstrated by
calculating the expected value and variance of the measured
value for four different error models.

SupposeX 5

(X4.1)

µ + b + e additive
µbe multiplicative (type I), E(e) 5 1
µ(1 + b + e) multiplicative (type II)
µ(1 + e) + b + e8/ =µ mixed

Then, it can be shown that

(X4.2)

µ + b additive

E(X) 5 µb multiplicative (I)
µ + µb multiplicative (II)
µ + b mixed

and

(X4.3)

Var(e) additive
Var(X) 5 µ2b2Var(e) multiplicative (I)

µ2Var(e) multiplicative (II)
µ2Var(e) + Var(e8)/µ mixed

X4.1.1 For the mixed model it is assumed that bothe and
e8 have mean zero and are independent. In the other cases,
except as noted,e has mean zero.

X4.1.2 It is also assumed thatb is a bias and, hence, is a
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constant. Now suppose that the source of the bias is from
calibration and that the calibration produces different biases at
different times, as in Case 2 of Appendix X2. Then theb term
might be considered as a random variable (assumed indepen-
dent ofe ande8 and with mean zero, except as noted) so the
above expressions become

(X4.4)

µ additive
E(X) 5 µ multiplicative (I), E(b) 5 1

µ multiplicative (II)
µ mixed

and

(X4.5)

Var(b) + Var(e) additive
Var(X) 5 µ2[Var(b) + Var(e) multiplicative (I), E(b) 5 1

+ Var(b) Var(e)] E(e) 5 1
µ2[Var(b) + Var(e)] multiplicative (II)
µ2 Var(e) + Var(b) mixed

+ Var(e8)/µ

X4.1.3 Note that the process now is, “Calibrate the instru-
ment and make a measurement.” Once the instrument is
calibrated,b is fixed and the previously given expressions for
E (X) and Var(X) are appropriate. One might writeE (X | b) and
Var(X | b) for these to emphasize that the value ofb is fixed for

a particular calibration. It should be clear now that knowledge
of the bias and of the variance ofe alone does not suffice to
determine the mean and variance ofX; the error model must be
known.

X4.1.4 As an example of the usage of models, suppose an
electronic balance is calibrated and then used to determine the
mass ofn items individually. Suppose also that the measured
weight of itemi, Xi, can be written as:

Xi 5 µi 1 b 1 e i (X4.6)

where:
b 5 a constant and
ei 5 independent normally distributed random variables.

Thenb is the bias (b might be due, for example, to imperfect
calibration). However, if then items were weighed on different
days and if the balance was calibrated daily, the above model
might become:

Xi 5 µi 1 bi 1 e i (X4.7)

X4.1.5 In this case there would be no specific error term for
calibration in the model. Note that in the first case Var(
X

i
) 5 s2

e and in the second case Var(Xi) 5 s 2
e + s2

e, a larger
quantity.

X5. AN EXAMPLE OF REPRESENTATIVE VERSUS RANDOM SAMPLING

X5.1 Suppose 100 g of PuO2 and 100 g of UO2 are mixed
together in a container. A sample of 5 g is to bedrawn and
analyzed for Pu content.

X5.1.1 To draw a 5-g sample at random requires that all
possible 5 g subsamples have the same chance of selection. If
the material is first well-blended (homogeneous), it is likely
that a 5-g random sample will be a representative sample. That
is, the Pu content (%) of the sample will be approximately the
same as the % Pu in the entire container. If the material is not

well-blended (heteregeneous), it is likely that the sample will
not be representative.

X5.1.2 Now consider the 5-g sample. Let this be well-
blended and divided into five 1-g subsamples. If each sub-
sample is analyzed for Pu content (%) by a specific technique,
five assays will be observed. These five values will then be a
simple random sample of measurements which are surely
representative of the sample. They will be representative of the
container contents if the 5-g sample is representative.

REFERENCES

(1) ASTM, Compilation of ASTM Standard Definitions, 6th Ed., ASTM,
Philadelphia, 1986.

(2) Kendall, M. G., and Buckland, W. R.,A Dictionary of Statistical
Terms, 3rd Ed., Hafner Publishing Co., Inc., New York, NY, 1971.

(3) Mandel, J., and Laskof, T., “The Nature of Repeatability and Repro-
ducibility,” Journal of Quality Technology, Vol 19, Jan. 1987, pp.
29–36.

(4) Mood, A. M., Graybill, F. A., and Boes, D. C.,Introduction to the
Theory of Statistics, 3rd Ed., 1974, McGraw Hill, New York, NY, pp.
176–182.

(5) NRC, Statistical Methods for Nuclear Material Management,
NUREG/CR-4604, Nuclear Regulatory Commission, Washington,
DC, 1988, pp. 88–93.

(6) Ku, H. H., “Statistical Concepts in Metrology,”Precision Measure-
ments and Calibration, Special Publication 300, Vol 1,
National Bureau of Standards, Washington, DC, 1969, pp. 296–330.

(7) Tietjen, G. L.,A Topical Dictionary of Statistics, Chapman and Hall,
New York, NY, 1986.

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection
with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such
patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and
if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards
and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible
technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your
views known to the ASTM Committee on Standards, at the address shown below.

C 1215

8



This standard is copyrighted by ASTM, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at
610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).

C 1215

9


