

Standard Test Method for Aromatic Types Analysis of Gas-Oil Aromatic Fractions by High Ionizing Voltage Mass Spectrometry¹

This standard is issued under the fixed designation D 3239; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method² covers the determination by high ionizing voltage, low resolution mass spectrometry of 18 aromatic hydrocarbon types and 3 aromatic thiophenotypes in straight run aromatic petroleum fractions boiling within the range from 205 to 540°C (400 to 1000°F) (corrected to atmospheric pressure). Samples must be nonolefinic, must contain not more than 1 mass % of total sulfur, and must contain not more than 5 % nonaromatic hydrocarbons. Composition data are in volume percent.

NOTE 1—Although names are given to 15 of the compound types determined, the presence of other compound types of the same empirical formulae is not excluded. All other compound types in the sample, unidentified by name or empirical formula, are lumped into six groups in accordance with their respective homologous series.

1.2 The values stated in acceptable SI units are to be regarded as the standard. The values given in parentheses are provided for information purposes only.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

- D 2549 Test Method for Separation of Representative Aromatics and Nonaromatics Fractions of High-Boiling Oils by Elution Chromatography³
- D 2786 Test Method for Hydrocarbon Types Analysis of Gas-Oil Saturate Fractions by High Ionizing Voltage Mass Spectrometry³
- E 137 Practice for Evaluation of Mass Spectrometers for

Quantitative Analysis from a Batch Inlet⁴

3. Terminology

3.1 Definitions of Terms Specific to This Standard:

- 3.1.1 Characteristic Mass Summations— Classes I-VII:
- 3.1.2 Class I:

$$\Sigma 78 = 78 + 92 + 106 + 120 + ...$$
to end, polyisotopic
+ 91 + 105 + 119 + ...to end, monoisotopic (1)

3.1.3 Class II:

$$\Sigma 104 = 104 + 118 + 132 + 146 + ...$$
to end, polyisotopic
+ 117 + 131 + 145 + ...to end, monoisotopic (2)

3.1.4 *Class III*:

 $\Sigma 129 = 130 + 144 + 158 + 172 + ...$ to end, polyisotopic + 129 + 143 + 157 + 171 + ...to end, monoisotopic (3)

3.1.5 Class IV:

$$\Sigma 128 = 128 + 142 + 156 + 170 + ..to end, polyisotopic + 141 + 155 + 169 + ..to end, monoisotopic (4)$$

3.1.6 Class V:

$$\Sigma 154 = 154 + 168 + 182 + 196 + ...$$
to end, polyisotopic
+ 167 + 181 + 195 + ...to end, monoisotopic (5)

3.1.7 Class VI:

 $\Sigma 166 = 166 + 180 + 194 + 208 + ...to end, polyisotopic + 179 + 193 + 207 + ...to end, monoisotopic (6)$

3.1.8 Class VII:

 $\Sigma 178 = 178 + 192 + 206 + 220 + ...$ to end, polyisotopic + 191 + 205 + 219 + ...to end, monoisotopic (7)

3.1.9 *Classes, Compound Types, Empirical Formulae*— See Table 1.

4. Summary of Test Method

4.1 The relative abundance of seven classes (I–VII) of aromatics in petroleum aromatic fractions is determined by mass spectrometry using a summation of peaks most characteristic of each class. Calculations are carried out by the use of a 7 by 7 inverted matrix derived from published spectra of pure aromatic compounds. Each summation of peaks includes the polyisotopic homologous series that contains molecular ions

¹ This test method is under the jurisdiction of ASTM Committee D02 on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.04 on Hydrocarbon Analysis.

Current edition approved Oct. 15, 1991. Published December 1991. Originally published as D 3239 – 73 T. Last previous edition D 3239 – 86.

² Robinson, C. J., and Cook, G. L., *Analytical Chemistry* (ANCHA), Vol 41, 1969, p. 1548.

³ Annual Book of ASTM Standards, Vol 05.01.

⁴ Discontinued—See 1992 Annual Book of ASTM Standards, Vol 05.03.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

TABLE 1 Classes, Compound Types, and Empirical Formulae

Class	Туре	Formula
1	0	alkylbenzenes, C _n H _{2n-6}
I	1	benzothiophenes, C _n H _{2n-10} S
I	2	naphthenephenanthrenes,
		C ₀ H ₂₀₋₂₀
11	0	naphthenebenzenes, $C_n H_{2n-8}$
11	1	pyrenes, $C_n H_{2n-22}$
11	2	unidentified
III	0	dinaphthenebenzenes, C _n H _{2n-10}
III	1	chrysenes, C _n H _{2n-24}
III	2	unidentified
IV	0	naphthalenes, C _n H _{2n-12}
IV	1	dibenzothiophenes, C _n H _{2n-16} S
IV	2	unidentified
V	0	acenaphthenes + dibenzofurans,
		$C_n H_{2n-14}$ and $C_n H_{2n-16} O$
V	1	perylenes, C _n H _{2n-28}
V	2	unidentified
VI	0	fluorenes, C _n H _{2n-16}
VI	1	dibenzanthracenes, C _n H _{2n-30}
VI	2	unidentified
VII	0	phenanthrenes, C _n H _{2n-18}
VII	1	naphthobenzothiophenes, C _n H _{2n-}
		22S
VII	2	unidentified

and the monoisotopic homologous series one mass unit less than the molecular ion series. Using characteristic summations found in the monoisotopic molecular ion—1 series of peaks, each class is further resolved to provide relative abundances of three compound types: nominal (Type 0), first overlap (Type 1), and second overlap (Type 2). The aromatic fraction is obtained by liquid elution chromatography (see Test Method D 2549).

NOTE 2—Monoisotopic peaks heights are obtained by correcting the polyisotopic heights for naturally occurring heavy isotopes, assuming that only ions of C_nH_{2n+2} to C_nH_{2-11} are present. This is not strictly accurate for aromatics, but the errors introduced by such assumption are trivial.

5. Significance and Use

5.1 A knowledge of the hydrocarbon composition of process streams and petroleum products boiling within the range 205 to 540°C (400 to 1000°F) is useful in following the effect of changes in process variables, diagnosing the source of plant upsets, and in evaluating the effect of changes in composition on product performance properties. This method, when used together with Test Method D 2786, provides a detailed analysis of the hydrocarbon composition of such materials.

6. Apparatus

6.1 *Mass Spectrometer*—The suitability of the mass spectrometer to be used with this method shall be proven by performance tests described both herein and in Practice E 137.

6.2 *Sample Inlet System*—Any inlet system may be used that permits the introduction of the sample without loss, contamination, or change in composition. The system must function in the range from 125 to 350°C to provide an appropriate sampling device.

6.3 Microburet or Constant-Volume Pipet.

6.4 *Mass Spectrum Digitizer*—It is recommended that a mass spectrum digitizer be used in obtaining the analysis, because it is necessary to use the heights of most of the peaks in the spectrum. Any digitizing system capable of supplying accurate mass numbers and peak heights is suitable.

6.5 *Electronic Digital Computer*—The computations for this analysis are not practical without the use of a computer. Any computer capable of providing approximately 60 K bytes in core and capable of compiling programs written in FOR-TRAN IV should be suitable.

7. Reagent

7.1 *n-Hexadecane*. (Warning—Combustible-Very harm-ful.)

8. Calibration

8.1 Calibration equations in the computer program given in Table 2 may be used directly provided the following procedures are followed:

8.1.1 Instrumental Conditions—Repeller settings are adjusted to maximize the m/e 226 ion of *n*-hexadecane. A magnetic field is used that will permit a scan over the mass range from 78 to 700. An ionizing voltage of 70 eV and an ionizing current in the range from 10 to 70 μ A is used.

Note 3—The instrument conditions and calibration equations described in this method are based on the use of a 180° magnetic-deflection type mass spectrometer (CEC Model 21-103). Satisfactory results have been obtained with some other magnetic deflection instruments. It is not known if the equations are suitable for use on all other mass spectrometer types.

8.1.2 *Computer Program*—The FORTRAN program given in Table 2 contains all the equations for calculating the analysis, including those for calculating monoisotopic peak heights. The program is compiled and linked to create a computer load module that is available whenever needed. When the spectrum shown in Table 3 is processed, thee results should agree with those shown in Table 4.

TABLE 2 High Ionizing Voltage, Low Resolution Mass Spectrometric Analysis of Gas Oil Aromatic Fractions

* The "end statement" designated is specific for IBM computers. The user may modify the FORTRAN program to suit his individual needs.

```
C
      IN THIS PROGRAM THE VARIARLE "H(M)" REPRESENTS THE HEIGHT OF THE
С
          POLYISOTOPIC PEAK AT MASS M. THE VARIABLE "HDI (M) " IS THE HEIGHT
С
           OF THE DEISOTOPED PEAK AT MASS M.
C
C
      THIS IS A POSSIBLE MAIN PROGRAM THAT READS INPUT DATA AND CALLS FIRST
С
С
           THE DEISOTOPING ROUTINE "SUBROUTINE DEISO" AND THEN THE
           CALCULATING AND REPORTING ROUTINE "SUBROUTINE AROMTC".
C
Ċ
             COMMON TITLE(20) + H(758) + HDI(758)
             DIMENSION MASS(8) + HITE(8)
        1 READ (5,10,END=99) (TITLE(I),I=1,20)
       10 FORMAT(20A4)
С
      A TITLE CARD FOR SAMPLE NAME, ETC. PRECEDES SPECTRAL DATA CARDS.
С
          FORMAT FOR TITLE IS 2044 (20 4-CHARACTER WORDS IN 80 COLUMNS).
C
          FORMAT FOR SPECTRAL DATA IS MASS (16) FOLLOWED BY HEIGHT (F4.0)
С
           WITH 8 PEAKS PER 80-COLUMN CARD.
С
C
             DO 20 I=12.758
             H(I) = 0.0
       20 HDI(I) = 0.0
       30 READ(5+40)(MASS(I)+HITE(I)+I=1+8)
       40 FORMAT(8(16+F4.0))
             DO 50 I=1.8
             IF (MASS(I) .EQ. 999999) GO TO 60
С
      ENTER "9999999" IN A MASS POSITION ON A CARD TO DENOTE SPECTRUM END.
С
C
             IF (MASS(I) .EQ.0) GO TO 50
             M = MASS(I)
             H(M) = HITE(I)
       50 CONTINUE
             GO TO 30
       60 CALL DEISO
             CALL AROMIC
             GO TO 1
C
      "GO TO 1" ALLOWS SUCCESSIVE SAMPLES TO BE COMPUTED BEFORE RELEASING
С
С
           COMPUTER.
Ĉ
       99 STOP
             END
              SUBROUTINE DEISO
С
       THIS SUBROUTINE COMPUTES MONOISOTOPIC PEAKS ASSUMING ALL IONS HAVE
С
           Z NUMBERS FROM +2 TO -11 IN THE FORMULA C(N)H(2N + Z).
С
С
              COMMON TITLE (20) . H(758) . HDI (758)
              DIMENSION NCAPB (758) . NHYD (758)
              00 10 I=12.758
              NCARB(T) = 0
       10 NHYD(I) = 0
              DO 20 K=12.758
              NCARB(K) = (K + 11)/14
              NHYD(K) = K - 12*NCARB(K)
              IF(NHYD(K) \cdot LT \cdot 0) NHYD(K) = 0
       20 CONTINUE
              DO 30 K=14.758
              HDI(K) = H(K)-HDI(K-1)*(.010811*FLOAT(NCARB(K-1))+.00015*FLOAT
            1 (NHYD(K-1)))
              HDI(K) = HDI(K)+HDI(K-2)*(=00005844*FLOAT(NCARB(K-2)*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2))*(1-NCARB(K-2)
            1))+.1125E-7*FLOAT(NHYD(K-2)*(1-NHYD(K-2)))-.162165E-5*FLOAT(NCARB(
            5K-5) *NHAD (K-5) ) )
              IF(HDI(K).LT.0.0)HDI(K) = 0.0
       30 CONTINUE
              RETURN
              END
```


TABLE 2 Continued

```
SUBROUTINE AROMIC
С
 THIS ROUTINE GIVES THE ANALYSIS OF AROMATICS FRACTIONS FROM PETROLEUM
С
    USING THE PROCEDURE DESCRIBED IN ANAL CHEM 41, 1548-54 (1969)
С
С
      COMMON TITLE (20) . H (758) . HDI (758)
      DIMENSION AIN(7,7), BA(7), BB(7), SR(758)
      DATA AIN /+1.8094,-.1952,+.0124,-.0027.-.0015,-.0011.-.0028.
                 -.1601.+2.0479+-.2806,-.0401.+.0082,+.0012++.0000.
     2
                 -.0943.-.2287.+2.3024.-.4935.-.0601.-.0155.-.0089.
     3
     4
                 -.0292.+.0033.-.0580.+1.9404.-.1337.-.0117.-.0043.
     5
                 -.0022,-.0003,-.0026,-.0195,+1.9773,-.1823,+.0123,
                 -.0420,+.0026,-.0018,-.0151,-.0584,+2.0616,-.4193,
     6
                 -.2346.-.1069.-.0267.-.0019.-.0057.-.0904.+1.9904/
c
c
      INITIALIZE SQUARE ROOT ARRAY
С
      DO 2132 I=12.750
 2132 SR(I) = 0.0
С
С
      ASSEMBLE APPROPRIATE PEAKS IN MASS SPECTRUM OF AROMATIC FRACTION
       FOR PROCESSING IN A 7 X 7 MATRIX. QUANTITIES A6, A7, A8, ETC. REFER
С
С
       INITIALLY TO SUMS OF PEAKS AT Z NUMBERS 6,7,8,ETC. A6,A8,ETC. ARE
c
c
       LATER REDEFINED TO INCLUDE THE ODD Z-NUMBER SUM CORRESPONDING TO
       THE PARENT-1 SERIES (A6 = A6 + A7, A8 = A8 + A9, ETC.)
ċ
      A6 = 0.0
      DO 2106 M=78,750,14
 2106 \ A6 = A6 + H(M)
      A7 = 0.0
      DO 2107 M=91+750,14
 2107 \text{ A7} = \text{A7} + \text{HDI(M)}
      A6 = A6 + A7
      A8 = 0.0
      DO 2108 M=104,750,14
 2108 A8 = A8 + H(M)
      A9 = 0.0
      DO 2109 M=117,750,14
 2109 A9 = A9 + HDI(M)
      A8 = A8 + A9
      A10 = 0.0
      DO 2110 M=130,750,14
 2110 \ A10 = A10 + H(M)
      A11 = 0.0
      DO 2111 M=129,750,14
 2111 A11 = A11 + HDI(M)
      A10 = A10 + A11
      A12 = 0.0
      DO 2112 M=128,750,14
 2112 A12 = A12 + H(M)
      A13 = 0.0
      DO 2113 M=141.750.14
 2113 \text{ A13} = \text{A13} + \text{HDI(M)}
      A12 = A12 + A13
      A14 = 0.0
      DO 2114 M=154,750,14
2114 \ A14 = A14 + H(M)
      A15 = 0.0
      DO 2115 M=167,750,14
2115 \text{ A15} = \text{A15} + \text{HDI(M)}
      A14 = A14 + A15
      A16 = 0.0
      DO 2116 M=166.750.14
2116 \ A16 = A16 + H(M)
      A17 = 0.0
      DO 2117 M=179.750.14
2117 \text{ A17} = \text{A17} + \text{HDI(M)}
      A16 = A16 + A17
      A18 = 0.0
      DO 2118 M=178,750,14
2118 A18 = A18 + H(M)
      A19 = 0.0
      D0 2119 M=191,750,14
```

```
🕼 D 3239
```

 TABLE 2
 Continued

```
2119 A19 = A19 + HDI(M)
      A18 = A18 + A19
С
С
      CORRECT THE PEAK SUMS FOR THE PRESENCE OF IRRELEVANT IONS AT
С
        MASSES 175+176+189+190+200+213
С
      CDI175 =HDI(161)-(HDI(161)-HDI(203))/3.0
      IF(HDI(175).GE.CDI175) GO TO 1046
      CDI175 = HDI(175)
С
      ABOVE STATEMENTS CORRECT HDI(175)
С
      NEXT STATEMENTS CORRECT H(176)
С
С
 1046 \text{ CH176} = H(162) - (H(162) - H(204))/3.0
      IF(H(176).GE.CH176)GO TO 1048
      CH176 = H(176)
С
      NEXT STATEMENTS CORRECT HDI(189)
С
С
 1048 CDI189 = CDI175 - (CDI175-HDI(203))/2.0
      IF (HDI (189) .GE.CDI189) GO TO 1049
      CDI189 = HDI(189)
С
С
      NEXT STATEMENTS CORRECT H(190)
С
 1049 CH190 = CH176-(CH176-H(204))/2.0
      IF(H(190).GE.CH190) GO TO 2101
      CH190 = H(190)
С
      NEXT STATEMENTS CORRECT H(200)
С
С
 2101 CH200 = (H(186)+H(214))/2.0
      IF (H(200).GE.CH200) GO TO 2102
      CH200 = H(200)
С
С
      NEXT STATEMENTS CORRECT HDI (213)
С
 2102 CDI213 = (HDI(199)+HDI(227))/2.0
       IF (HDI (213) .GE.CDI213) GO TO 2103
      CDI213 = HDI(213)
С
       NEXT STATEMENTS CORRECT THE A6, A8, ETC. SUMS
C
С
 2103 A6 =A6-(HDI(175)+HDI(189) +H(176)+H(190))
      1 +CDI175 +CDI189+ CH176+ CH190
      A10 = A10 - (H(200) + HDI(213)) + CH200 + CDI213
С
С
       REDEFINE A5+A8+ETC+ AS SUBSCRIPTED VARIABLE AND MULTIPLY BY THE
       AROMATICS INVERSE AIN(I,J)
С
Ċ
       BA(1) = A6
      BA(2) = A8
      BA(3) = A10
      BA(4) = A12
       BA(5) = A14
       BA(6) = A16
      BA(7) = A18
       00 2125 J=1+7
       BB(J)=0.0
      DO 2124 I=1.7
 2124 BB(J)=BB(J)+BA(I)*AIN(J,I)
 2125 CONTINUE
       00 2127 J=1+7
       IF (BB (J)) 2126,2127,2127
 2126 BB(J)=0.0
 2127 CONTINUE
       AA6 = BB(1)
       AAB = BB(2)
       AA10 = BB(3)
       AA12 = BB(4)
       AA14 = BB(5)
       AA16 = BB(6)
       AA18 = BB(7)
       SUMAA = 0.0
       DO 2128 J=1.7
```

TABLE 2Continued

```
2128 \text{ SUMAA} = \text{SUMAA+BB}(J)
С
      VALUES OF AA6+AA8+ETC. ARE DIVISIONS CALCULATED FOR NOMINAL Z=-6+
С
С
       -R.ETC. SUMAA IS SUM OF THE AA VALUES AND REPRESENTS THE TOTAL
       DIVISIONS OF AROMATICS CALCULATED.
С
С
      THE FOLLOWING STATEMENTS RESOLVE OVERLAPPING TYPES IN Z = -6,
С
      A7 = A7-HDI(175)-HDI(189)+CDI175+CDI189
      HDI (175) = CDI175
      HDI(189)=CDI189
      DO 2130 M=105+750+14
      IF (HDI (M))2130,2131,2130
 2130 CONTINUE
 2131 \text{ MM} = M-14
      SLOPE = (((0.72*HDI(105))**0.5) - (HDI(MM))**0.5)/
     1 (90.71-(1000.0/FLOAT(MM))**2)
      B = (0.72*HDI(105))**0.5-90.71*SLOPE
       DO 2133 M=147.MM.14
       REALM = M
  2133 SR(M) = SLOPE*(1000.0/REALM)**2 +8
 С
 С
        AROVE IS FOR Z = -6 AND STORES SQUARE ROOTS OF ALKYL BENZENE PEAK
         HEIGHTS IN ARRAY SR(I).BELOW IS FOR Z = -8
 С
 С
        DO 2134 M=215.750.14
        IF (HDI (M))2134+2135+2134
  2134 CONTINUE
  2135 MN = M-14
      SLOPE = (((0.66*HDI(173))**0.5)-(HDI(MN))**0.5)/
1 (34.12 -(1000.0/FLOAT(MN))**2)
       B = (0.66*HDI(173))**0.5-34.12*SLOPE
       DO 2136 M=215+MN+14
       REALM = M
  2136 SR(M) = SLOPE*(1000.0/REALM)**2 +B
 С
       BELOW IS FOR Z = -10
 С
 С
        A11 = A11 - HDI(213)+CDI213
       HDI(213) = CDI213
D0 2137 M=241,750,14
       IF(HDI(M))2137-2138-2137
  2137 CONTINUE
  2138 M0 = M-14
SLOPE =((HDI(185))**0.5-(HDI(MO))**0.5)/
      1 (29.22-(1000.0/FLOAT(MO))**2)
       B= HDI(185)**0.5 - 29.22*SLOPE
       DO 2139 M=241,M0,14
       REALM = M
  2139 SR(M) = SLOPE*(1000.0/REALM)**2+B
 С
 Ċ
       BELOW IS FOR Z = -12
 С
       DO 2140 M=197.750.14
       IF (HDI (M)) 2140,2141,2140
  2140 CONTINUE
  2141 \text{ MP} = M-14
       SLOPE = (((0.25*HDI(183))**0.5)-(HDI(MP))**0.5)/
      1 (29.86-(1000.0/FLOAT(MP))**2)
       B = (0.25*HDI(183))**0.5 - 29.86*SLOPE
       DO 2142 M=197.MP.14
       REALM = M
  2142 SR(M) = SLOPE*(1000.0/REALM)**2+B
 С
С
       RELOW IS FOR Z = -14
С
       DO 2143 M=265.750.14
       IF (HDI (M))2143+2144+2143
  2143 CONTINUE
  2144 MQ = M-14
      SLOPE = (((0.64*HDI(251))**0.5)-(HDI(MQ))**0.5)/
1 (15.87-(1000.0/FLOAT(MQ))**2)
       B = (0.64*HDI(251))**0.5 - 15.87*SLOPE
```

🕼 D 3239

 TABLE 2
 Continued

```
D0 2145 M=265,MQ,14
      REALM = M
 2145 SR(M) = SLOPE*(1000.0/REALM)**2+B
С
С
      RELOW IS FOR Z = -16
С
      DO 2146 M=291+750+14
      IF(HDI(M))2146+2147+2146
 2146 CONTINUE
 2147 MR = M-14
      SLOPE = (((0.7*HDI(277))**0.5)-(HDI(MR))**0.5)/
     1 (13.03-(1000.0/FLOAT(MR))**2)
      B = (0.7*HDI(277))**0.5-13.03*SLOPE
      DO 2148 M=291,MR,14
      REALM = M
 2148 SR(M) = SLOPE*(1000.0/REALM)**2+B
С
Ċ
      BELOW IS FOR Z = -18
С
      DO 2149 M=247,750,14
      IF(HDI(M))2149+2150+2149
 2149 CONTINUE
 2150 MS = M-14
     SLOPE = (((0.58*HDI(233))**0.5)-(HDI(MS))**0.5)/
     1 (18.42-(1000.0/FLOAT(MS)) **2)
      B = (0.58*HDI(233))**0.5-18.42*SLOPE
      DO 2151 M=247,MS,14
      REALM = M
 2151 SR(M) = SLOPE*(1000.0/REALM)**2+3
С
С
      THE SQUARE ROOT ARRAY HAS BEEN CALCULATED. FOR CERTAIN SPECTRA IT
С
       MAY BE POSSIBLE TO GET SLOPE AND INTERCEPT VALUES IN REGIONS OF
С
       ZERO PEAK HEIGHT. IF THIS OCCURS, ERRORS MIGHT BE ENTERED IN THE
       SR ARRAY. THE FOLLOWING SETS SR TO ZERO AT MASSES WHERE HDI=0.0
С
C
      00 2153 I=12,750
      IF(HDI(I)) 2152,2152,2153
 2152 SR(I) = 0.0
 2153 CONTINUE
С
С
      THE SR ARRAY IS SQUARED TO GIVE UNCORRECTED PEAK HEIGHTS OF THE
С
       NOMINAL Z TYPES
С
      DO 2154 I=12,750
 2154 SR(I) =(SR(I)**2)
С
С
      CORRECT CERTAIN VALUES IN SR(I) FOR NONLINEARITY OF SQ RT RELATION
с
      SR(147) = SR(147)*1.44
      SR(197) = SR(197)*3.10
      SP(211) = SP(211)*2.52
      SR(225) = SR(225)*2.07
      SR(239) = SR(239)*1.83
      SR(253) = SR(253)*1.59
      SR(267) = SR(267)*1.39
      SR(281) = SR(281)*1.28
      SR(295) = SR(295)*1.26
      SR(309) = SR(309)*1.14
      SR(323) = SR(323)*1.06
      SR(265) = SR(265)*1.42
      SR(279) = SR(279)*1.24
      SR(293) = SR(293)*1.12
      SR(307) = SR(307)*1.06
      SR(291) = SR(291)*1.24
      SR(305) = SR(305)*1.15
      SR(319) = SR(319)*1.07
      SR(333) = SR(333)*1.06
      SR(347) = SR(347)*1.05
      SR(361) = SR(361)*1.03
      SR(247) = SR(247)*1.61
      SR(261) = SR(261)*1.50
      SR(275) = SR(275)*1.44
      SR(289) = SR(289)*1.37
      SR(303) = SR(303)*1.28
```

```
🕼 D 3239
```

```
TABLE 2Continued
```

```
SR(317) = SR(317)*1.28
       SR(331) = SR(331)*1.21
      SR(345) = SR(345)*1.10
      SR(359) = SR(359)*1.09
      SR(373) = SR(373)*1.07
      SR(387) = SR(387)*1.05
¢
      IT IS NECESSARY THAT NO VALUE SR(M) EXCEEDS THE CORRESPONDING
С
С
        VALUE HDI(M)
      DO 2156 M=12,750
      IF(SR(M)-HDI(M))2156+2156+2155
 2155 \text{ SR(M)} = \text{HDI(M)}
 2156 CONTINUE
C
Ċ
      CALCULATE PORTIONS OF A7 DUE TO A6A, A105, A20A AND OTHER TYPES
С
      A6A = 0.0
      D0 2157 M=91+133+14
 2157 \ A6A = A6A+HDI(M)
      D0 2158 M=147, MM, 14
 2158 \ A6A = A6A + SR(M)
      A10S = 0.0
      DO 2159 M=147.189.14
 2159 \text{ Alos} = \text{Alos} + \text{HDI(M)} - \text{SR(M)}
      A10S = A10S/.75
      A20A = A7 - A6A - A10S
      IF (A20A) 2160 • 2161 • 2161
 2160 \ A20A = 0.0
      A10S = A7 - A6A
 2161 CONTINUE
С
С
      CALCULATE DIVISIONS OF A6A, A10S, AND A20A
С
      TRASH = (A6-AA6*.5579)*(A7/A6)
      IF(TRASH.LT.0.0)TRASH = 0.0
      A7 = A7 - TRASH
      IF(A7.LE.0.0)A7 = 1.0
      A6A = A6A - TRASH
      IF(A6A.LT.0.0)A6A = 0.0
      IF (A6A.EQ.0.0) A7=A10S+A20A
      A64 = (A6A/A7) *AA6
      A105 = (A105/A7)*AA6
      A20A = (A20A/A7)*AA6
С
      CALCULATE PORTIONS OF A9 DUE TO A8A, A22A, AND OTHER TYPES
С
С
      A8A = 0.0
      DO 2162 M=117,201,14
 2162 A8A = A8A+HDI(M)
      DO 2163 M=215.MN.14
 2163 \text{ A8A} = \text{A8A+SR}(M)
      0.0 = ASSA
      D0 2164 M=215,257,14
 2164 \ A22A = A22A + HDI(M) - SR(M)
      A22A = A22A/.75
      A36A = A9 - A8A - A22A
      IF(A36A)2165+2166+2166
 2165 \ A36A = 0.0
      A22A = A9 - A8A
2166 CONTINUE
с
С
      CALCULATE DIVISIONS OF ABA, A224, AND OTHER TYPES
С
      TRASH = (AR - AA8 + .4997) + (A9/A8)
      IF(TRASH_LT_0_0)TRASH = 0.0
      A9 = A9 - TRASH
      IF(A9.LE.0.0)A9 = 1.0
      ABA = ABA - TRASH
      IF (A8A.LT.0.0) A8A = 0.0
      IF (A8A.EQ.0.0) A9=A22A+A36A
      ARA = (A8A/A9) *AAR
      A22A = (A22A/A9) *AA8
      A36A = (A36A/A9)*AA8
```


TABLE 2 Continued

```
С
С
      CALCULATE PORTIONS OF A11 DUE TO A10A, A24A, AND OTHER TYPES
С
      A10A = 0.0
      DO 2167 M=129,227,14
 2167 A10A = A10A+HDI(M)
      DO 2168 M=241.MO.14
 2168 \text{ A10A} = \text{A10A+SR(M)}
      A24A = 0.0
      DO 2169 M=241+283+14
 2169 A24A = A24A + HDI(M) - SR(M)
      A24A = A24A/.75
      A38A = A11-A10A-A24A
      IF (A38A)2170+2171+2171
 2170 A38A = 0.0
      A24A = A11-A10A
 2171 CONTINUE
С
С
      CALCULATE DIVISIONS OF A10A+A24A+AND OTHER TYPES
С
      TRASH = (A10-AA10*.4435)*(A11/A10)
      IF (TRASH.LT.0.0) TRASH = 0.0
      All = All - TRASH
      IF(A11.LE.0.0)A11 = 1.0
      A10A = A10A - TRASH
      IF(A10A.LT.0.0)A10A = 0.0
      IF(A10A.EQ.0.0)A11=A24A+A38A
      A10A = (A10A/A11)*AA10
      A24A = (A24A/A11) * AA10
      A38A = (A38A/A11) *AA10
С
С
      CALCULATE PORTIONS OF A13 DUE TO A12A, A16S, AND OTHER TYPES
C
      A12A = 0.0
      DO 2172 M=141.183,14
 2172 \text{ A12A} = \text{A12A+HD1(M)}
      DO 2173 M=197.MP.14
 2173 \ A12A = A12A+SR(M)
      A165 = 0.0
      DO 2174 M=197.225.14
 2174 \text{ A16S} = \text{A16S} + \text{HDI(M)} - \text{SR(M)}
      A165 = A165/.625
      A26A = A13 - A12A - A16S
      IF (A26A) 2175+2176+2176
 2175 \ A26A = 0.0
      A165 = A13 - A12A
 2176 CONTINUE
c
c
      CALCULATE DIVISIONS OF A12A, A16S, A26A
С
      TRASH = (A12-AA12*.5192)*(A13/A12)
      IF(TRASH_LT_0_0)TRASH = 0.0
      A13 = A13 - TRASH
      IF(A13.LE.0.0)A13 = 1.0
      A12A = A12A - TRASH
      IF(A12A.LT.0.0)A12A = 0.0
      IF (A12A.EQ.0.0) A13=A165+A26A
      A12A = (A12A/A13)*AA12
      A16S = (A16S/A13)*AA12
      A26A = (A26A/A13) * AA12
С
С
      CALCULATE PORTION OF A15 DUE TO A14A, A28A, AND OTHER TYPES
C
      A14A = 0.0
      00 2177 M=167,251.14
 2177 \text{ A14A} = \text{A14A+HD1(M)}
      D0 2178 M=265,MQ,14
 2178 \text{ A14A} = \text{A14A+SR(M)}
      A28A = 0.0
      D0 2179 M=265+307+14
 2179 A28A = A28A + HDI(M) - SR(M)
      A28A = A28A/.75
      A42A = A15 - A14A - A28A
```


TABLE 2Continued

```
IF (A42A) 2180+2181+2181
  2180 \ A42A = 0.0
       A28A = A15-A14A
 2181 CONTINUE
С
       CALCULATE DIVISIONS OF A14A+A28A+AND OTHER TYPES
С
С
       TRASH = (A14-AA14*.5075)*(A15/A14)
       IF(TRASH_LT_0_0)TRASH = 0.0
       A15 = A15 - TRASH
       IF(A15 \cdot LE \cdot 0 \cdot 0) A15 = 1 \cdot 0
       A14A = A14A - TRASH
       IF(A14A \cdot LT \cdot 0 \cdot 0) A14A = 0 \cdot 0
       IF (A14A.EQ.0.0) A15=A28A+A42A
       A14A = (A14A/A15)*AA14
       A28A = (A28A/A15)*AA14
       A42A = (A42A/A15)*AA14
С
       CALCULATE PORTIONS OF A17 DUE TO A16A, A30A, AND OTHER TYPES
C
С
       A16A = 0.0
       D0 2182 M=179,277,14
 2182 \text{ A16A} = \text{A16A+HDI(M)}
       DO 2183 M=291.MR.14
 2183 \text{ A16A} = \text{A16A} + \text{SR}(M)
       A30A = 0.0
       D0 2184 M=291+333+14
 2184 \text{ A30A} = \text{A30A} + \text{HDI(M)} + \text{SR(M)}
       A30A = A30A/.75
       A44A = A17-A16A-A30A
       IF (A44A) 2185+2186+2186
 2185 \ A44A = 0.0
       A30A = A17 - A16A
 2186 CONTINUE
С
       CALCULATE DIVISIONS OF A16A, A30A, AND OTHER TYPES
С
С
       TRASH = (A16-AA16*.4910)*(A17/A16)
       IF(TRASH_LT_0_0)TRASH = 0.0
       A17 = A17 - TRASH
       IF (A17.LE.0.0) A17 = 1.0
       A16A = A16A - TRASH
       IF(A16A \cdot LT \cdot 0 \cdot 0) A16A = 0 \cdot 0
       IF (A16A.EQ.0.0) A17=A30A+A44A
       A16A = (A16A/A17) * AA16
       A30A = (A30A/A17)*AA16
       A44A = (A44A/A17) * AA16
С
C
       CALCULATE PORTIONS OF A19 DUE TO A18A, A22S, A32A
С
       A18A = 0.0
       DO 2187 M=191,233,14
 2187 \text{ A18A} = \text{A18A+HD1(M)}
       DO 2188 M=247.MS.14
 2188 A18A = A18A+SR(M)
A22S = 0.0
       DO 2189 M=247+289+14
 2189 A22S = A22S + HDI(M) - SR(M)
       A225 = A225/.75
       A32A = A19 - A18A - A22S
       IF(A32A)2190,2191,2191
 5190 \ A32A = 0.0
       A225 = A19-A18A
 2191 CONTINUE
C
С
       CALCULATE DIVISIONS OF A18A+A22S+AND OTHER TYPES
С
       TRASH = (A18-AA18*.5073)*(A19/A18)
       IF (TRASH.LT.0.0) TRASH = 0.0
       A19 = A19 - TRASH
       IF (A19.LE.0.0) A19 = 1.0
       A18A = A18A - TRASH
       IF(A18A_{\bullet}LT_{\bullet}O_{\bullet}O)A18A = 0.0
       IF (A18A.EQ.0.0) A19=A225+A32A
      A18A = (A18A/A19)*A418
      A225 = (A225/A19)*AA18
      A32A = (A32A/A19)*AA18
```

(S))	D 3239	
------	--------	--

TABLE 2 Contin

0000	THIS COMPLETES CALCULATION OF AROMATICS BREAKDOWN VOLUME PERCENTS ARE NEXT CALCULATED
С	V6A = $100.0*A6A/SUMAA$ V10S = $100.0*A6A/SUMAA$ V20A = $100.0*A20A/SUMAA$ V2A = $100.0*A2A/SUMAA$ V2A = $100.0*A2A/SUMAA$ V10A = $100.0*A10A/SUMAA$ V2A = $100.0*A10A/SUMAA$ V2A = $100.0*A2A/SUMAA$ V1A = $100.0*A2A/SUMAA$ V1A = $100.0*A12A/SUMAA$ V1A = $100.0*A16S/SUMAA$ V1A = $100.0*A16S/SUMAA$ V26A = $100.0*A26A/SUMAA$ V26A = $100.0*A42A/SUMAA$ V16A = $100.0*A46A/SUMAA$ V16A = $100.0*A16A/SUMAA$ V26A = $100.0*A44A/SUMAA$ V26A = $100.0*A44A/SUMAA$ V26A = $100.0*A42A/SUMAA$ V26A = $100.0*A444/SUMAA$ V26A = $100.0*A42A/SUMAA$ V26A = $100.0*A42A/SUMAA$
с	$ \begin{array}{l} AMONO &= \ A6A + A8A + A1OA \\ VMONO &= \ V6A + V8A + V1OA \\ ADI &= \ A12A + A14A + A16A \\ VDI &= \ V12A + V14A + V16A \\ ATRI &= \ A18A + A2OA \\ VTRI &= \ V18A + V2OA \\ ATETRA &= \ A22A + A24A \\ VTETRA &= \ V22A + V24A \\ APENTA &= \ A28A + A3OA \\ VPENTA &= \ V28A + V30A \\ ATHIO &= \ A10S + A16S + A22S \\ VTHIO &= \ V10S + V16S + V22S \\ AUNID &= \ A36A + A38A + A26A + A42A + A44A + A32A \\ VUNID &= \ V36A + V38A + V26A + V42A + V44A + V32A \\ \end{array} $
2500 2501 2502 2503 2504 2504 2504 2504	WRITE (6,2501) WRITE (6,2501)(TITLE(I),I=1,20) WRITE (6,2502)AMONO,VMONO,464,V64,AB4,VRA,A104,V10A WRITE (6,2502)ADI,VDI,A124,V124,A144,V144,A164,V16A WRITE (6,2503)ADI,VDI,A124,V124,A144,V144,A16A,V16A WRITE (6,2503)ATFTA,VTRI,A184,V184,A204,V20A WRITE (6,2505)ATETRA,VTRI,A184,V184,A204,V20A WRITE (6,2505)ATETRA,VTRI,A284,V284,A30A,V30A WRITE (6,2507)ATHIO,VTHIO,A105,V105,A165,V165,A225,V22S WRITE (6,2508)AUNID,VUNID,A364,V364,A384,V384,A264,V264,A424,V42A, 1 A444,V444,A324,V32A) FORMAT (1H1 9X,44HMASS SPECTRAL ANALYSIS OF AROMATIC FRACTIONS) 1 FORMAT (1H1 9X,44HMASS SPECTRAL ANALYSIS OF AROMATIC FRACTIONS) 1 FORMAT (1H1,9X,44HMASS SPECTRAL ANALYSIS OF AROMATIC FRACTIONS) 1 FORMAT (1H1,9X,13HAUNOAROMATICS,24X,F7.0,6X,F7.1/10X,13HALKYLBENZE 1NES,15X,F7.0,6X,F7.1/10X,17HNAPHTHENERENZENES,11X,F7.0,6X,F7.1/ 210X,19HDINAPHTHENERENZENES,9X,F7.0,6X,F7.1) 3 FORMAT (1H0,8X,11HDIAROMATICS,26X,F7.0,6X,F7.1)10X,12HNAPHTHALENES 1,16X,F7.0,6X,F7.1/10X,28HACENAPHTHENES, DIBENZOFURANS,F7.0,6X,F7.1 2/10X,9HFLUORENES,19X,F7.0,6X,F7.1) 4 FORMAT (1H0,8X,12HTRIAPOMATICS,25X,F7.0,6X,F7.1/10X,13HPHENANTHREN 1ES,15X,F7.0,6X,F7.1/10X,9HCHRYSENES,19X,F7.0,6X,F7.1/10X,13HPHENANTHREN 1ES,15X,F7.0,6X,F7.1/10X,9HCHRYSENES,19X,F7.0,6X,F7.1/10X,9HPERYLENES,21 1X,F7.0,6X,F7.1/10X,9HCHRYSENES,19X,F7.0,6X,F7.1/10X,9HPERYLENES,11 19X,F7.0,6X,F7.1/10X,9HCHRYSENES,19X,F7.0,6X,F7.1/10X,9HPERYLENES,11 119X,F7.0,6X,F7.1/10X,17HDIBENZANTHRACENES,11X,F7.0,6X,F7.1/10X,15HRENZ 10THIOPHENES,13X,F7.0,6X,F7.1/10X,17HDIRENZOHIOPHENES,11X,F7.0,6X,F7.1/10X,17HD 5 FORMAT (1H0,8X,22HUNIDENTIFIED AROMATICS,15X,F7.0,6X,F7.1/10X,37HC 1LASS I INCL WITH NAPH PHENANTHRENES/10X,8HCLASS IV,20X,F7.0,6X,F7.1/10X,37HC 1LASS I INCL WITH NAPH PHENANTHRENES/10X,8HCLASS IV,20X,F7.0,6X,F7.1/10X,4X,9HCLASS VII,419X,F7.0,6X,F7.1/10X,8HCLASS VI,20X,F7.0,6X,F7.1/10X,4X,9HCLASS VII,419X,F7.0,6X,F7.1/10X,8HCLASS VI,20X,F7.0,6X,F7.1/10X,4X,9HCLASS VII,419X,F7.0,6X,F7.1/10X,8HCLASS VI,20X,F7.0,6X,F7.1/10X,4X,9HCLASS VII,414X,57.0,6X,F7.1/10X,4X,9HCLASS VII
	RETURN

END

8.1.2.1 *Data Input Format*—The input format suggested in the main program may be changed to suit the needs of individual laboratories provided that true masses and peak heights are stored in the H(M) array.

8.1.2.2 *FORTRAN IV Language*—Changes in the program may be required for compatibility with the particular computing system to be used. These are permitted provided that the altered program gives the results shown in Table 4 with the input data of Table 3.

NOTE 4—The program, as shown in Table 2, has run satisfactorily on IBM System 360 computers.

9. Procedure

9.1 If the mass spectrometer has been in continuous operation, no additional preparation is necessary before analyzing samples. However, if the spectrometer has been turned on only recently, check its operation according to the manufacturer's instructions to ensure stability before proceeding.

9.2 Obtain the mass spectrum of the sample, scanning from mass 76 to the high-mass end of the spectrum.

10. Calculations

10.1 *Recording Mass Spectrum*—Read peak heights and the corresponding masses for all peaks in the spectrum of the sample. Use the data, along with sample identification, as input to the computer.

11. Precision and Bias

11.1 The precision of this test method as obtained by statistical examination of interlaboratory test results on a sample having the composition given in Table 5, is as follows:

TABLE 3 PC-69-378 Test Spectrum f	or Gas Oil Aromatics Anal	ysis
-----------------------------------	---------------------------	------

TABLE 3 PC-69-378 Test Spectrum for Gas Oil Aromatics Analysis								
MASS HT	MASS HT	MASS HT	MASS HT	MASS HT	MASS HT	MASS HT	MASS HT	
78 126	79 332	80 98	81 610	82 128	83 532	84 76	85 181	
86 46	87 77	88 72	89 140	90 35	91 694	92 210	93 216	
94 93 102 92	95 480 103 127	96 108	97 301	98 62	99 53	100 54	101 158	
102 42	103 127	104 174 112 55	105 984 113 132	106 387 114 117	107 187 115 402	$108 107 \\116 194$	109 264	
				114 117	115 402	110 194	117 400	
118 270 126 134	1191045 127 175	120 389 128 407	121 164	122 70	123 152	124 48	125 104	
134 225	135 112	136 47	129 482 137 98	130 287 138 78	131 655 139 146	132 272 140 72	133 662	
142 297	143 496	144 289	145 739	146 212	147 289	140 72 148 102	141 406 149 94	
150 83	151 140	152 247	153 229	154 163	155 486	156 264	157 438	
158 226	159 533	160 144	161 161	162 70	163 119	164 76	165 / 77	
166 204	167 268	168 180	169 434	170 209	171 318	164 76 172 140	165 477 173 316	
174 106	175 125	176 129	177 104	178 334	179 414	180 204	181 312	
182 160 190 143	183 280 191 297	184 134 192 262	185 226 193 380	186 98 194 200	187 218	188 96	189 306	
		1-1 101	175 500	174 200	195 318	196 132	197 191	
198 98	199 179	200 112	201 158	505 300	203 253	204 144	205 307	
206 255 214 93	207 316 215 374	208 171 216 213	209 240 217 225	210 117	211 168	212 90	213 198	
222 133	223 169	224 124	225 154	218 156 226 184	219 269 227 181	250 516 258 500	221 238 229 320	
230 206	231 244	232 171	233 197	234 162	235 172	236 112	237 150	
238 113	239 257	240 136	241 189	242 374	242 051	2.4. 1.04		
246 167	247 153	248 130	249 134	242 174 250 132	243 251 251 118	244 196 252 192	245 214 253 200	
254 124	255 178	256 172	257 190	258 173	259 156	260 152	261 131	
262 121 270 155	263 145	264 124	265 162	266 156	267 153	268 128	269 156	
270 155	271 144	272 144	273 114	274 142	275 105	276 149	277 115	
278 130	279 136	280 143	281 133	282 132	283 127	284 133	285 114	
286 127 294 134	287 97 295 115	288 124	289 114	290 123	291 94	292 125	293 112	
302 127	303 93	296 127 304 111	297 108 305 85	298 122 306 122	299 95 307 93	300 130 308 123	301 82	
310 120	311 92	312 116	313 91	314 120	315 78	316 116	309 95 317 77	
318 106	319 78	320 116	221 01	200 115	200 00			
326 118	327 78	328 115	321 81 329 69	322 115 330 112	323 80 331 68	324 118 332 101	325 82	
334 109	335 75	336 108	337 73	338 108	339 75	340 108	333 68 341 67	
342 110	343 62	344 107	345 61	346 98	347 61	348 102	349 75	
350 108	351 69	352 104	353 67	354 100	355 57	356 104	357 56	
358 102	359 54	360 92	361 54	362 96	363 69	364 102	365 73	
366 104 374 84	367 63 375 47	368 96 376 88	369 56 377 54	370 98 378 90	371 50 379 55	372 95 380 90	373 49 381 54	
382 88	383 49	384 91	385 46	386 87	387 44	388 76	389 43	
390 80	391 47	392 84	393 48	394 84	395 48	396 80	397 45	
398 84	399 42	400 81	401 41	402 67	403 38	404 70	40E 41	
406 76	407 42	408 75	409 42	410 72	403 38	404 70 412 77	405 41 413 38	
414 76	415 38	416 60	417 34	418 63	419 34	420 66	421 38	
422 66 430 54	423 38 431 30	424 64 432 56	425 36 433 33	426 69 434 59	427 34 435 33	428 66	429 33	
	401 00	432 90	400 00	434 34	435 33	436 59	437 34	
438 57	439 32	440 61	441 30	442 58	443 30	444 47	445 27	
446 49 454 54	447 28 455 27	448 53 456 50	449 30 457 26	450 54 458 41	451 30	452 52	453 28	
462 46	463 26	464 47	465 26	458 41 466 45	459 23 467 25	460 44 468 48	461 25 469 24	
470 44	471 23	472 36	473 21	474 38	475 22	476 40	477 22	
478 41	479 23	480 40	481 22	482 40	483 21	484 38	485 20	
486 31	487 17	488 33	489 19	492 40	403 21	484 38 492 35	485 20 493 20	
494 34	495 18	496 35	497 18	498 33	499 17	500 26	501 15	
502 28 510 30	503 15 511 16	504 30 512 28	505 17 513 18	506 30	507 18	508 29	509 17	
			515 15	514 22	515 13	516 24	517 14	
518 25	519 14	520 26	521 14	522 24	523 14	524 24	525 14	
526 24 534 21	527 13 535 12	528 18 536 20	529 11 537 11	530 20	531 12	532 20	533 12	
542 15	543 9	544 16	545 11	538 20 546 18	539 11 547 10	540 18 548 18	541 11 549 10	
550 16	551 9	552 16	553 9	554 14	555 8	556 11	557 7	
558 11	559 8	560 13	561 8	543 14	E60 0	F.(- / - -	
566 12	567 9	568 11	561 8 569 8	562 14 570 9	563 8 571 6	564 12 572 10	565 A 573 8	
574 10	575 6	576 10	577 6	578 9	579 6	580 9	581 6	
582 8	583 5	584 7	585 5	586 7	587 5	588 7	589 5	
590 8	591 6	592 8	593 4	594 7	595 4	596 6	597 4	
598 5	599 4	600 6	601 4	602 6	603 4	604 6	605 4	
606 5	607 3	608 5	609 3	610 4	611 3	612 4	613 3	
614 4 622 4	615 4 624 3	616 4 626 3	617 3 628 3	618 4	619 3	620 4	621 3	
90.C 4	0 2 7 J	JEO J	628 3	630 3	632 399	9999		

		Calc. Ion	Sums	Volume	%
	Monoaromatics:		28498.		38.9
	Alkylbenzenes	9703.		13.3	
	Naphthenebenzenes	9017.		12.3	
	Dinaphthenebenzenes	9778.		13.4	
	Diaromatics:		19158.		26.2
	Naphthalenes	4774.		6.5	
	Acenaphthenes,	6576.		9.0	
	dibenzofurans				
	Fluorenes	7809.		10.7	
	Triaromatics:		9625.		13.1
	Phenanthrenes	6156.		8.4	
	Naphthenephenanthrenes	3470.		4.7	
	Tetraaromatics:		6070.		8.3
	Pyrenes	3980.		5.4	
90.	Chrysenes	2090.		2.9	
	Pentaaromatics:		1658.		2.3
	Perylenes	1293.		1.8	
	Dibenzanthracenes	366.		0.5	
	Thiopheno Aromatics:		1872.		2.6
	Benzothiophenes	565.		0.8	
	Dibenzothiophenes	968.		1.3	
	Naphthobenzothiophenes	339.		0.5	
	Unidentified Aromatics:		6322.		8.6
	Class I incl with				
	Naphthenephenanthrene	es			
	Class II	614.		0.8	
	Class III	838.		1.1	
	Class IV	3431.		4.7	
	Class V	546.		0.7	
	Class VI	281.		0.4	
	Class VII	612.		0.8	

TABLE 4 Mass Spectral Analysis of Aromatic Fractions PC-69-378 Test Spectrum for Gas Oil Aromatics Analysis

TABLE 5 Precision Summary Based on Cooperative Data

	Vol %	σ_r	σ_R	r	R
Alkylbenzenes	13.7	0.3	1.0	1.2	3.0
Naphthenebenzenes	13.3	0.1	1.1	0.5	3.3
Dinaphthenebenzenes	13.7	0.2	0.4	0.9	1.1
Nonhthalanaa	6.7	0.2	0.8	0.9	2.3
Naphthalenes Acenaphthenes/dibenzofurans	6.7 9.0	0.2	0.8	0.9	2.3 0.5
Fluorens	9.0	0.1	0.2	0.3	0.5
Fluorens	10.7	0.1	0.2	0.5	0.0
Phenanthrenes	8.6	0.1	0.3	0.2	1.0
Naphthenephenanthrenes	4.5	0.2	0.4	0.7	1.2
Pyrenes	5.7	0.1	0.5	0.3	1.6
Chrysenes	2.8	0.2	0.4	0.5	1.1
Perylenes	1.7	0.1	0.2	0.3	0.6
Dibenzanthracenes	0.4	0.1	0.2	0.2	0.4
Dibenzantinacenes	0.4	0.1	0.1	0.2	0.4
Benzothiophenes	1.0	0.2	0.4	0.8	1.1
Dibenzothiophenes	1.5	0.1	0.3	0.3	0.8
Naphthabenzothiophenes	0.5	0.1	0.3	0.3	1.0
Class II Unidentified	0.4	0.1	0.4	0.3	1.1
Class III Unidentified	0.6	0.1	0.4	0.4	1.2
Class IV Unidentified	4.1	0.2	0.5	0.6	1.6
Class V Unidentified	0.5	0.1	0.3	0.5	0.8
Class VI Unidentified	0.2	0.1	0.1	0.3	0.4
Class VII Unidentified	0.4	0.2	0.2	0.5	0.7

 σ_r = repeatability standard deviation

 σ_R = reproducibility standard deviation *r* = repeatability

R = reproducibility

11.1.1 Repeatability-The difference between successive test results obtained by the same operator with the same apparatus under constant operating conditions on identical test material, would in the long run, in the normal and correct

operation of the test method, exceed the values shown in Table 5 only in one case in twenty.

11.1.2 *Reproducibility*—The difference between two single and independent results, obtained by different operators working in different laboratories on identical test material, would in the long run, in the normal and correct operation of the test method, exceed the values shown in Table 5 only in one case in twenty.

NOTE 5-If samples are analyzed that differ appreciably in composition

from the sample used for the interlaboratory study, this precision statement may not apply.

11.2 *Bias*—The quantities determined are defined by the conditions employed in this empirical method, and a statement of bias is therefore not appropriate.

12. Keywords

12.1 aromatic; gas oil; mass spectrometry; petroleum

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).