Standard Specification for "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pressure Pipe ${ }^{1}$

Abstract

This standard is issued under the fixed designation D 3517; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope

1.1 This specification covers machine-made fiberglass pipe, 8 in . (200 mm) through $144 \mathrm{in}$. (3700 mm), intended for use in water conveyance systems which operate at internal gage pressures of $250 \mathrm{psi}(1.72 \mathrm{MPa})$ or less. Both glass-fiberreinforced thermosetting-resin pipe (RTRP) and glass-fiberreinforced polymer mortar pipe (RPMP) are fiberglass pipes. The standard is suited primarily for pipes to be installed in buried applications, although it may be used to the extent applicable for other installations such as, but not limited to, jacking, tunnel lining and sliplining rehabilitation of existing pipelines.

Note 1-For the purposes of this standard, polymer does not include natural polymers.
1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are provided for information purposes only.

Note 2-There is no similar or equivalent ISO standard.
1.3 The following safety hazards caveat pertains only to the test methods portion, Section 8, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards: ${ }^{2}$

C 33 Specification for Concrete Aggregates
D 638 Test Method for Tensile Properties of Plastics

[^0]D 695 Test Method for Compressive Properties of Rigid Plastics
D 790 Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials
D 883 Terminology Relating to Plastics
D 1600 Terminology for Abbreviated Terms Relating to Plastics
D 2290 Test Method for Apparent Tensile Strength of Ring or Tubular Plastics and Reinforced Plastics by Split Disk Method
D 2412 Test Method for Determination of External Loading Characteristics of Plastic Pipe by Parallel-Plate Loading
D 2584 Test Method for Ignition Loss of Cured Reinforced Resins
D 2992 Practice for Obtaining Hydrostatic or Pressure Design Basis for "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe and Fittings
D 3567 Practice for Determining Dimensions of "Fiberglass" (Glass-Fiber-Reinforced Thermosetting Resin) Pipe and Fittings
D 3892 Practice for Packaging/Packing of Plastics
D 4161 Specification for "Fiberglass" (Glass-FiberReinforced Thermosetting-Resin) Pipe Joints Using Flexible Elastomeric Seals
F 412 Terminology Relating to Plastic Piping Systems
F 477 Specification for Elastomeric Seals (Gaskets) for Joining Plastic Pipe
2.2 ISO Standard:

ISO 1172 Textile Glass Reinforced Plastics-Determination of Loss on Ignition ${ }^{3}$
2.3 NSF Standard:

Standard No. 14 for Plastic Piping Components and Related Materials ${ }^{4}$

3. Terminology

3.1 Definitions:

[^1]3.1.1 General-Definitions are in accordance with Terminology D 833 and Terminology F 412 and abbreviations are in accordance with Terminology D 1600, unless otherwise indicated.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 fiberglass pipe-a tubular product containing glassfiber reinforcements embedded in or surrounded by cured thermosetting resin. The composite structure may contain aggregate, granular, or platelet fillers, thixotropic agents, pigments, or dyes. Thermoplastic or thermosetting liners or coatings may be included.
3.2.2 flexible joint -a joint that is capable of axial displacement or angular rotation, or both.
3.2.3 liner-a resin layer, with or without filler, or reinforcement, or both, forming the interior surface of the pipe.
3.2.4 qualification test-one or more tests used to prove the design of a product. Not a routine quality control test.
3.2.5 reinforced polymer mortar pipe (RPMP)—a fiberglass pipe with aggregate.
3.2.6 reinforced thermosetting resin pipe (RTRP)—a fiberglass pipe without aggregate.
3.2.7 rigid joint -a joint that is not capable of axial displacement or angular rotation.
3.2.8 surface layer-a resin layer, with or without filler, or reinforcements, or both, applied to the exterior surface of the pipe structural wall.

4. Classification

4.1 General-This specification covers fiberglass pressure pipe defined by raw materials in the structural wall (type) and liner, surface layer material (grade), operating pressure (class), and pipe stiffness. Table 1 lists the types, liners, grades, classes, and stiffnesses that are covered.

Note 3-All possible combinations of types, liners, grades, classes, and stiffnesses may not be commercially available. Additional types, liners, grades, and stiffnesses may be added as they become commercially
available. The purchaser should determine for himself or consult with the manufacturer for the proper class, type, liner, grade and stiffness of pipe to be used under the installation and operating conditions that will exist for the project in which the pipe is to be used.
4.2 Designation Requirements-The pipe materials designation code shall consist of the standard designation, ASTM D 3517, followed by type, liner, and grade in Arabic numerals, class by the letter C and two or three Arabic numerals, and pipe stiffness by a capital letter. Table 1 presents a summary of the designation requirements. Thus, a complete material code shall consist of ASTM D 3517. . . three numerals, C . . . and two or three numerals, and a capital letter.

Note 4-Examples of the designation are as follows: (1) ASTM D 3517-1-1-3-C50-A for glass-fiber reinforced aggregate and polyester resin mortar pipe with a reinforced thermoset liner and an unreinforced polyester resin and sand surface layer, for operation at $50 \mathrm{psi}(345 \mathrm{kPa})$, and having a minimum pipe stiffness of $9 \mathrm{psi}(62 \mathrm{kPa})$, (2) ASTM D 3517-4-2-6-C200-C for glass-fiber reinforced epoxy resin pipe with a non-reinforced thermoset liner, no surface layer, for operation at 200 psi $(1380 \mathrm{kPa})$, and having a minimum pipe stiffness of $36 \mathrm{psi}(248 \mathrm{kPa})$.
Note 5-Although the "Form and Style for ASTM Standards" manual requires that the type classification be roman numerals, it is recognized that companies have stencil cutting equipment for this style of type, and it is therefore acceptable to mark the product type in arabic numbers.

5. Materials and Manufacture

5.1 General-The resins, reinforcements, colorants, fillers, and other materials, when combined as a composite structure, shall produce a pipe that shall meet the performance requirements of this specification.
5.2 Wall Composition-The basic structural wall composition shall consist of thermosetting resin, glass fiber reinforcement, and, if used, an aggregate filler.
5.2.1 Resin-A thermosetting polyester or epoxy resin, with or without filler.
5.2.2 Reinforcement-A commercial grade of E-type glass fibers with a finish compatible with the resin used.

TABLE 1 General Designation Requirements for Fiberglass Pressure Pipe

Note 1—The cell-type format provides the means of identification and specification of piping materials. This cell-type format, however, is subject to misapplication since unobtainable property combinations can be selected if the user is not familiar with non-commercially available products. The manufacturer should be consulted.
Note 2—For the purposes of this standard, polyester includes vinyl ester resins.
Note 3- Based on operating pressure in psig (numerals).
5.2.3 Aggregate-A siliceous sand conforming to the requirements of Specification C 33, except that the requirements for gradation shall not apply.

Note 6-Fiberglass pipe intended for use in the transport of potable water should be evaluated and certified as safe for this purpose by a testing agency acceptable to the local health authority. The evaluation should be in accordance with requirements for chemical extraction, taste, and odor that are no less restrictive than those included in National Sanitation Foundation (NSF) Standard 61. The seal or mark of the laboratory making the evaluation should be included on the fiberglass pipe.
5.3 Liner and Surface Layers-Liner or surface layer, or both, when incorporated into or onto the pipe, shall meet the structural requirements of this specification.
5.4 Joints-The pipe shall have a joining system that shall provide for fluid tightness for the intended service condition. A particular type of joint may be restrained or unrestrained and flexible or rigid depending on the specific configuration and design conditions.
5.4.1 Unrestrained-Pipe joints capable of withstanding internal pressure but not longitudinal tensile loads.
5.4.1.1 Coupling or Bell-and-Spigot Gasket Joints, with a groove either on the spigot or in the bell to retain an elastomeric gasket that shall be the sole element of the joint to provide watertightness. For typical joint details see Fig. 1.
5.4.1.2 Mechanical Coupling Joint, with elastomeric seals.
5.4.1.3 Butt Joint, with laminated overlay.
5.4.1.4 Flanged Joint, both integral and loose ring.
5.4.2 Restrained-Pipe joints capable of withstanding internal pressure and longitudinal tensile loads..
5.4.2.1 Joints similar to those in 5.4.1.1 with supplemental restraining elements.
5.4.2.2 Butt Joint, with laminated overlay.
5.4.2.3 Bell-and-Spigot, with laminated overlay.
5.4.2.4 Bell-and-Spigot, adhesive-bonded joint: Three types of adhesive-bonded joints are permitted by this standard as follows:
5.4.2.4.1 Tapered bell-and-spigot, an adhesive joint that is manufactured with a tapered socket for use in conjunction with a tapered spigot and a suitable adhesive.
5.4.2.4.2 Straight bell-and-spigot, an adhesive joint that is manufactured with an untapered socket for use in conjunction with an untapered spigot and a suitable adhesive.
5.4.2.4.3 Tapered bell and straight spigot, an adhesive joint that is manufactured with a tapered socket for use with an untapered spigot and a suitable adhesive.
5.4.2.5 Flanged Joint, both integral and loose ring
5.4.2.6 Mechanical Coupling, an elastomeric sealed coupling with a supplemental restraining elements.

5.4.2.7 Threaded Joints.

Note 7-Other types of joints may be added as they become commercially available.
Note 8-Restrained joints typically increase service loads on the pipe to greater than those experienced with unrestrained joints. The purchaser is cautioned to take into consideration all conditions that may be
encountered in the anticipated service and to consult the manufacturer regarding the suitability of a particular type and class of pipe for service with restrained joint systems.
5.5 Gaskets-Elastomeric gaskets when used with this pipe shall conform to the requirements of Specification F 477.

6. Requirements

6.1 Workmanship:
6.1.1 Each pipe shall be free from all defects including indentations, delaminations, bubbles, pinholes, cracks, pits, blisters, foreign inclusions, and resin-starved areas that due to their nature, degree, or extent, detrimentally affect the strength and serviceability of the pipe. The pipe shall be as uniform as commercially practicable in color, opacity, density, and other physical properties.
6.1.2 The inside surface of each pipe shall be free of bulges, dents, ridges, and other defects that result in a variation of inside diameter of more than $1 / 8$ in. (3.2 mm) from that obtained on adjacent unaffected portions of the surface. No glass fiber reinforcement shall penetrate the interior surface of the pipe wall.
6.1.3 Joint sealing surfaces shall be free of dents, gouges, and other surface irregularities that will affect the integrity of the joints.

6.2 Dimensions:

6.2.1 Pipe Diameters-Pipe shall be supplied in the nominal diameters shown in Table 2 or Table 3. The pipe diameter tolerances shall be as shown in Table 2 or Table 3, when measured in accordance with 8.1.1.
6.2.2 Lengths-Pipe shall be supplied in nominal lengths of $10,20,30,40$, and 60 ft . $(3.05,6.10,9.15,12.19$, and 18.29 m$)$. The actual laying length shall be the nominal length $\pm 2 \mathrm{in}$. ($\pm 51 \mathrm{~mm}$), when measured in accordance with 8.1.2. At least 90% of the total footage of any one size and class, excluding special order lengths, shall be furnished in the nominal lengths specified by the purchaser. Random lengths, if furnished, shall not vary from the nominal lengths by more than $5 \mathrm{ft}(1.53 \mathrm{~m})$ or 25%, whichever is less.
6.2.3 Wall Thickness-The average wall thickness of the pipe shall not be less than the nominal wall thickness published in the manufacturer's literature current at the time of purchase, and the minimum wall thickness at any point shall not be less than 87.5% of the nominal wall thickness when measured in accordance with 8.1.3.
6.2.4 Squareness of Pipe Ends-All points around each end of a pipe unit shall fall within $\pm 1 / 4 \mathrm{in}$. ($\pm 6.4 \mathrm{~mm}$) or $\pm 0.5 \%$ of the nominal diameter of the pipe, whichever is greater, to a plane perpendicular to the longitudinal axis of the pipe, when measured in accordance with 8.1.4.
6.3 Soundness-Unless otherwise agreed upon between purchaser and supplier, test each length of pipe up to 54 in . (1370 mm) diameter hydrostatically without leakage or cracking, at the internal hydrostatic proof pressures specified for the applicable class in Table 4, when tested in accordance with 8.2.

FIG. 1 Typical Joints

FIG. 2 Beam Strength-Test Setup

TABLE 2 Nominal Inside Diameters (ID) and Tolerances Inside Diameter Control Pipe

Inch-Pound Units		SI Units			
ominal	Tolerance, in.	Nominal Metric	ID Range ${ }^{B}$, mm		Tolerance ${ }^{B}$ on
Diameter ${ }^{\text {A }}$, in.		Diameter ${ }^{B}$, mm	Minimum	Maximum	mm
8	± 0.25	200	196	204	± 1.5
10	± 0.25	250	246	255	± 1.5
12	± 0.25	300	296	306	± 1.8
14	± 0.25	400	396	408	± 2.4
15	± 0.25	500	496	510	± 3.0
16	± 0.25	600	595	612	± 3.6
18	± 0.25	700	695	714	± 4.2
20	± 0.25	800	795	816	± 4.2
21	± 0.25	900	895	918	± 4.2
24	± 0.25	1000	995	1020	± 5.0
27	± 0.27	1200	1195	1220	± 5.0
30	± 0.30	1400	1395	1420	± 5.0
33	± 0.33	1600	1595	1620	± 5.0
36	± 0.36	1800	1795	1820	± 5.0
39	± 0.39	2000	1995	2020	± 5.0
42	± 0.42	(2200)	2195	2220	± 6.0
45	± 0.45	2400	2395	2420	± 6.0
48	± 0.48	(2600)	2595	2620	± 6.0
51	± 0.51	2800	2795	2820	± 6.0
54	± 0.54	(3000)	2995	3020	± 6.0
60	± 0.60	3200	3195	3220	± 7.0
66	± 0.66	(3400)	3395	3420	± 7.0
72	± 0.72	3600	3595	3620	± 7.0
78	± 0.78	(3800)	3795	3820	± 7.0
84	± 0.84	4000	3995	4020	± 7.0
90	± 0.90
96	± 0.96	\ldots	\ldots	\ldots	. \cdot.
102	± 1.00
108	± 1.00	\ldots
114	± 1.00
120	± 1.00
132	± 1.00	\ldots
144	± 1.00	\ldots	\ldots

${ }^{\text {A }}$ Inside diameters other than those shown shall be permitted by agreement between purchaser and supplier.
${ }^{B}$ Values are taken from International Standards Organization documents. Parentheses indicate non-preferred diameters.

For sizes over 54 in., the frequency of hydrostatic leak tests shall be as agreed upon by purchaser and supplier.

6.4 Hydrostatic Design Basis:

6.4.1 Long-Term Hydrostatic Pressure-The pressure classes shall be based on long-term hydrostatic pressure data obtained in accordance with 8.3 and categorized in accordance with Table 5. Pressure classes are based on extrapolated strengths at 50 years. For pipe subjected to longitudinal loads or circumferential bending, the effect of these conditions on the hydrostatic design pressure, classification of the pipe must be considered.
6.4.2 Control Requirements-Test pipe specimens periodically in accordance with Practice D 2992.

Note 9—Hydrostatic design basis (HDB-extrapolated value at 50 years) determined in accordance with Procedure A of Practice D 2992, may be substituted for the Procedure B evaluation required by 8.3. It is generally accepted that the Procedure A HDB value times 3 is equivalent to the Procedure B HDB value.
6.5 Stiffness-Each length of pipe shall have sufficient strength to exhibit the minimum pipe stiffness $(F / \Delta y)$ specified in Table 6, when tested in accordance with 8.4. At deflection level A per Table 7, there shall be no visible damage in the test

TABLE 3 Nominal Outside Diameters (OD) and Tolerances

Nominal Pipe Size, in.	Steel Pipe Equivalent (IPS) OD's, in.	Tolerance, in.	Cast Iron Pipe Equivalent OD's, in.		Tolerance, in.	
8	8.625	+0.086	9.05			
		-0.040		7		
10	10.750	+0.108	11.10			
		-0.048		\}	± 0.06	
12	12.750	+0.128	13.20			
		-0.056)		
14	14.000	+0.140	15.30			
		-0.062)		
16	16.000	+0.160	17.40			
		-0.070			+0.05	
18	19.50		-0.08	
20 \cdot	21.60			
24	\ldots	...	25.80	J		
30	...	\cdots	32.00)		
36	\cdots	...	38.30			
42	. .	\cdots	44.50		+0.08	
48	50.80		-0.06	
54	- ${ }^{\text {- }}$...	57.56	,		
60	. .		61.61			
Metric Pipe Size, mm	Ductile Iron Pipe Equivalent, mm	$\begin{gathered} \text { Tolerance Upper, } \\ \text { mm } \end{gathered}$	Tolerance Lower, mm	International O.D., mm	Tolerance Upper, mm	Tolerance Lower, mm
200	220.0	+1.0	0.0	.	.	.
250	271.8	+1.0	-0.2
300	323.8	+1.0	-0.3	310	+1.0	-1.0
350	375.7	+1.0	-0.3	361	+1.0	-1.2
350 400	426.6	+1.0	-0.3	412	+1.0	-1.4
	477.6	+1.0	-0.4	463	+1.0	-1.6
450 500	529.5	+1.0	-0.4	514	+1.0	-1.8
600	632.5	+1.0	-0.5	616	+1.0	-2.0
				718	+1.0	-2.2
				820	+1.0	-2.4
				924	+1.0	-2.6
				1026	+1.0	-2.6
				1229	\% +1.0	- 2.6
				1434	+1.0	-2.8
				1638	+1.0	-2.8
				1842	+1.0	-3.0
				2046	+1.0	-3.0
				2250	+1.0	-3.2
				2453	+1.0	-3.4
				2658	+1.0	-3.6
				2861	+1.0	-3.8
				3066	+1.0	-4.0

TABLE 4 Hydrostatic-Pressure Test

Class	Hydrostatic Proof Pressure, gage, psi (kPa)
C50	$100(689)$
C75	$150(1034)$
C120	$200(1379)$
C150	$250(1723)$
C175	$300(2068)$
C200	$350(2412)$
C225	$400(2757)$
C250	$450(3102)$

TABLE 5 Long-Term Hydrostatic Pressure Categories

Class	Minimum Calculated Values of Long-Term Hydrostatic Pressure gage, psi (kPa)
C50	$90(621)$
C75	$135(931)$
C100	$180(1241)$
C125	$225(1551)$
C150	$270(1862)$
C175	$315(2172)$
C200	$360(2482)$
C225	$405(2792)$

TABLE 6 Minimum Stiffness at 5% Deflection

Nominal Diameter in.	Pipe Stiffness, psi (kPa)				
	A	B	C	D	
	\ldots	\ldots	$36(248)$	$72(496)$	
10	\ldots	$18(124)$	$36(248)$	$72(496)$	
12 and greater	$9(62)$	$18(124)$	$36(248)$	$72(496)$	

TABLE 7 Ring Deflection Without Damage or Structural Failure

	Nominal Pipe Stiffness, psi			
	9	18	36	72
Level A	18%	15%	12%	9%
Level B	30%	25%	20%	15%

specimen evidenced by surface cracks. At deflection level B per Table 7, there shall be no indication of structural damage as evidenced by interlaminar separation, separation of the liner or surface layer (if incorporated) from the structural wall, tensile failure of the glass fiber reinforcement, and fracture or buckling of the pipe wall.

Note 10-This is a visual observation (made with the unaided eye) for quality control purposes only and should not be considered a simulated service test. Table 7 values are based on an in-use long-term deflection limit of 5% and provide an appropriate uniform safety margin for all pipe stiffnesses. Since the pipe stiffness values $(F / \Delta y)$ shown in Table 6 vary, the percent deflection of the pipe under a given set of installation conditions will not be constant for all pipes. To avoid possible misapplication, take care to analyze all conditions which might affect performance of the installed pipe.
6.5.1 For other pipe stiffness levels, appropriate values for Level A and Level B deflections (Table 7) may be computed as follows:

$$
\begin{equation*}
\text { Level A at new PS }=\left(\frac{72}{\text { new PS }}\right)^{0.33} \tag{1}
\end{equation*}
$$

$$
\text { Level B at new } \mathrm{PS}=\text { new Level } \mathrm{A} \div 0.6
$$

6.5.2 Since products may have use limits of other than 5% long-term deflection, Level A and Level B deflections (Table 7) may be proportionally adjusted to maintain equivalent in-use safety margins. For example, a 4% long-term limiting deflection would result in a 20% reduction of Level A and Level B deflections, while a 6% limiting deflection would result in a 20% increase in Level A and Level B deflection values. However, minimum values for Level A and Level B deflections shall be equivalent to strains of 0.6 and 1.0% respectively (as computed by Eq X1.4 in Appendix X1 of Specification D 3262).
6.6 Hoop-Tensile Strength—All pipe manufactured under this specification shall meet or exceed the hoop-tensile strength shown for each size and class in Table 8, when tested in accordance with 8.5.
6.6.1 Alternative Requirements-When agreed upon between the purchaser and the supplier, the minimum hooptensile strength shall be as determined in accordance with 8.5.1.
6.7 Joint Tightness-All joints shall meet the laboratory performance requirements, of Specification D 4161. Unrestrained joints shall be tested with a fixed end closure condition and restrained joints shall be tested with a free end closure condition. Rigid joints shall be exempt from angular deflection requirements of D 4161. Rigid joints typically include butt joints with laminated overlay, bell-and-spigot joints with laminated overlay, flanged, bell-and-spigot adhesive bonded and threaded.

6.8 Longitudinal Strength:

6.8.1 Beam Strength—For pipe sizes up to 27 in . the pipe shall withstand, without failure, the beam loads specified in Table 9, when tested in accordance with 8.6.1. For pipe sizes larger than 27 in ., and alternatively for smaller sizes, adequate beam strength is demonstrated by tension and compression tests conducted in accordance with 8.6.2 and 8.6.3, respectively, for pipe wall specimens oriented in the longitudinal direction, using the minimum tensile and compressive strength specified in Table 9.
6.8.2 Longitudinal Tensile Strength—All pipe manufactured under this specification shall have a minimum axial tensile elongation at failure of 0.25% and meet or exceed the longitudinal tensile strength shown for each size and class in Table 10 , when tested in accordance with 8.6.2.

Note 11-The values listed in Table 10 are the minimum criteria for products made to this standard. The values may not be indicative of the axial strength of some products, or of the axial strength required by some installation conditions and joint configurations.
6.8.3 Conformance to the requirements of 6.8 .1 shall satisfy the requirements of 6.8 .2 for those pipe sizes and classes where the minimum longitudinal tensile strength values of Table 9 are

TABLE 8 Minimum Hoop Tensile Strength of Pipe Wall

Inch-Pound Units									
Nominal	Hoop Tensile Strength, Ibf/in. Width								
Diameter, in.	C50	C75	C100	C125	C150	C175	C200	C225	C250
8	800	1200	1600	2000	2400	2800	3200	3600	4000
10	1000	1500	2000	2500	3000	3500	4000	4500	5000
12	1200	1800	2400	3000	3600	4200	4800	5400	6000
14	1400	2100	2800	3500	4200	4900	5600	6300	7000
15	1500	2250	3000	3750	4500	5250	6000	6750	7500
16	1600	2400	3200	4000	4800	5600	6400	7200	8000
18	1800	2700	3600	4500	5400	6300	7200	8100	9000
20	2000	3000	4000	5000	6000	7000	8000	9000	10000
21	2100	3150	4200	5250	6300	7350	8400	9450	10500
24	2400	3600	4800	6000	7200	8400	9600	10800	12000
27	2700	4050	5400	6750	8100	9450	10800	12150	13500
30	3000	4500	6000	7500	9000	10500	12000	13500	15000
33	3300	4950	6600	8250	9900	11450	13200	14850	16500
36	3600	5400	7200	9000	10800	12600	14400	16200	18000
39	3900	5850	7800	9750	11700	13650	15600	17550	19500
42	4200	6300	8400	10500	12600	14700	16800	18900	21000
45	4500	6750	9000	11250	13500	15750	18000	20250	22500
48	4800	7200	9600	12000	14400	16800	19200	21600	24000
54	5400	8100	10800	13500	16200	18900	21600	24300	27000
60	6000	9000	12000	15000	18000	21000	24000	27000	30000
66	6600	9900	13200	16500	19800	23100	26400	29700	33000
72	7200	10800	14400	18000	21600	25200	28800	32400	36000
78	7800	11700	15600	19500	23400	27300	31200	35100	39000
84	8400	12600	16800	21000	25200	29400	33600	37800	42000
90	9000	13500	18000	22500	27000	31500	36000	40500	45000
96	9600	14400	19200	24000	28800	33600	38400	43200	48000
102	10200	15300	20400	25500	30600	35700	40800	45900	51000
108	10800	16200	21600	27000	32400	37800	43200	48600	54000
120	12000	18000	24000	30000	36000	42000	48000	54000	60000
132	13200	19800	26400	33000	39600	46200	52800	59400	66000
144	14400	21600	28800	36000	43200	50400	57600	64800	72000
SI Units									
Nominal Diameter, in.	Hoop Tensile Strength, kN/m Width								
	C50	C75	C100	C125	C150	C175	C200	C225	C250
8	140	210	280	350	420	490	560	630	700
10	175	263	350	438	525	613	700	788	875
12	210	315	420	525	630	735	840	945	1050
14	245	368	490	613	735	858	980	1103	1225
15	263	394	525	656	788	919	1050	1181	1313
16	280	420	560	700	840	980	1120	1260	1400
18	315	473	630	788	945	1103	1226	1418	1575
20	350	525	700	875	1050	1225	1400	1575	1750
21	368	552	735	919	1103	1287	1470	1654	1838
24	420	630	840	1050	1260	1470	1680	1890	2100
27	473	709	945	1181	1418	1654	1890	2126	2363
30	525	788	1050	1313	1575	1838	2100	2363	2625
33	578	866	1155	1444	1733	2004	2310	2599	2888
36	630	945	1260	1575	1890	2205	2520	2835	3150
39	683	1024	1365	1706	2048	2389	2730	3071	3413
42	735	1103	1470	1838	2205	2573	2940	3308	3675
45	788	1181	1575	1969	2363	2756	3150	3544	3938
48	840	1260	1680	2100	2520	2940	3360	3780	4200
54	945	1418	1890	2363	2835	3308	3780	4253	4725
60	1050	1575	2100	2625	3150	3675	4200	4725	5250
66	1155	1733	2310	2888	3465	4043	4620	5198	5775
72	1260	1890	2520	3150	3780	4410	5040	5670	6300
78	1365	2048	2730	3413	4095	4778	5460	6143	6825
84	1470	2205	2940	3675	4410	5145	5880	6615	7350
90	1575	2363	3150	3938	4725	5513	6300	7088	7875
96	1680	2520	3360	4200	5040	5880	6720	7560	8400
102	1785	2678	3570	4463	5355	6248	7140	8033	8925
108	1890	2835	3780	4725	5670	6615	7560	8505	9450
120	2100	3150	4200	5250	6300	7350	8400	9450	10500
132	2310	3465	4620	5775	6930	8085	9240	10395	11550
144	2520	3780	5040	6300	7560	8820	10800	11340	12600

[^2]TABLE 9 Beam-Strength Test Loads

Nominal Diameter, in.	Beam Load (P)		Minimum Longitudinal Tensile Strength, per Unit of Circumference		Minimum Longitudinal Compressive Strength, per Unit of Circumference	
	lbf	(kN)	lbf/in.	(kN/m)	lbf/in.	(kN/m)
8	800	(3.6)	580	(102)	580	(102)
10	1200	(5.3)	580	(102)	580	(102)
12	1600	(7.1)	580	(102)	580	(102)
14	2200	(9.8)	580	(102)	580	(102)
15	2600	(11.6)	580	(102)	580	(102)
16	3000	(13.3)	580	(102)	580	(102)
18	4000	(17.8)	580	(102)	580	(102)
20	4400	(19.6)	580	(102)	580	(102)
21	5000	(22.2)	580	(102)	580	(102)
24	6400	(28.5)	580	(102)	580	(102)
27	8000	(35.6)	580	(102)	580	(102)
30	580	(102)	580	(102)
33	. .	\ldots	640	(111)	640	(111)
36	700	(122)	700	(122)
39	\ldots	...	780	(137)	780	(137)
42	. \cdot	. .	800	(140)	800	(140)
45	\ldots	\ldots	860	(150)	860	(150)
48	. \cdot		920	(161)	920	(161)
51	\ldots	. .	980	(171)	980	(171)
54			1040	(182)	1040	(182)
60	1140	(200)	1140	(200)
66			1260	(220)	1260	(220)
72			1360	(238)	1360	(238)
78	\ldots	\ldots	1480	(260)	1480	(260)
84			1600	(280)	1600	(280)
90	\ldots	\ldots	1720	(301)	1720	(301)
96			1840	(322)	1840	(322)
102	1940	(340)	1940	(340)
108			2060	(360)	2060	(360)
114	\cdots	\ldots	2180	(382)	2180	(382)
120			2280	(400)	2280	(400)
132			2520	(440)	2520	(440)
144	.	.	2740	(480)	2740	(480)

equal to the values of Table 10. Conformance to the requirements of 6.8 .2 shall satisfy the longitudinal tensile strength requirements of 6.8.1.

7. Sampling

7.1 Lot-Unless otherwise agreed upon between the purchaser and the supplier, one lot shall consist of 100 lengths of each type, grade, and size of pipe produced.
7.2 Production Tests-Select one pipe at random from each lot and take one specimen from the pipe barrel to determine conformance of the material to the workmanship, dimensional, and stiffness, and strength requirements of $6.1,6.2,6.5$, and 6.6, respectively. Unless otherwise agreed upon between purchaser and supplier, all pipes (up to $54-\mathrm{in}$. ($1370-\mathrm{mm}$) diameter) shall meet the soundness requirements of 6.3.
7.3 Qualification Tests-Sampling for qualification tests (see section 3.2.4) is not required unless otherwise agreed upon between the purchaser and the supplier. Qualification tests, for which a certification and test report shall be furnished when requested by the purchaser include the following:
7.3.1 Long-Term Hydrostatic Pressure Test.
7.3.2 Joint-Tightness Test (See 6.7).
7.3.3 Longitudinal-Strength Test, including:
7.3.3.1 Beam strength and
7.3.3.2 Longitudinal tensile strength.
7.4 Control Tests-The following test is considered a control requirement and shall be performed as agreed upon between the purchaser and the supplier:
7.4.1 Soundness Test-60-in. (1520-mm) diameter pipe and larger.
7.4.2 Perform the sampling and testing for the control requirements for hydrostatic design basis at least once every two years.
7.5 For individual orders conduct only those additional tests and numbers of tests specifically agreed upon between the purchaser and the supplier.

8. Test Methods

8.1 Dimensions:

8.1.1 Diameters:

8.1.1.1 Inside Diameter-Take inside diameter measurements at a point approximately 6 in . $(152 \mathrm{~mm})$ from the end of the pipe section using a steel tape or an inside micrometer with graduations of $1 / 16 \mathrm{in}$. (1 mm) or less. Make two 90° opposing measurements at each point of measurement and average the readings.
8.1.1.2 Outside Diameter-Determine in accordance with Test Method D 3567.
8.1.2 Length-Measure with a steel tape or gage having graduations of $1 / 16 \mathrm{in}$. (1 mm) or less. Lay the tape or gage on or inside the pipe and measure the overall laying length of the pipe.
8.1.3 Wall Thickness-Determine in accordance with Test Method D 3567.
8.1.4 Squareness of Pipe Ends-Rotate the pipe on a mandrel or trunnions and measure the runout of the ends with a dial indicator. The total indicated reading is equal to twice the distance from a plane perpendicular to the longitudinal axis of the pipe. Alternatively, when squareness of pipe ends is rigidly fixed by tooling, the tooling may be verified and reinspected at frequent enough intervals to ensure that the squareness of the pipe ends is maintained within tolerance.
8.2 Soundness-Determine soundness by a hydrostatic proof test procedure. Place the pipe in a hydrostatic pressure testing machine that seals the ends and exerts no end loads. Fill the pipe with water, expelling all air, and apply internal water pressure at a uniform rate not to exceed $50 \mathrm{psi}(345 \mathrm{kPa}) / \mathrm{s}$ until the Table 4 test pressure specified in accordance with 6.3 is reached. Maintain this pressure for a minimum of 30 s . The pipe shall show no visual signs of weeping, leakage, or fracture of the structural wall.
8.3 Long-Term Hydrostatic Pressure-Determine the longterm hydrostatic pressure at 50 years in accordance with Procedure B of Practice D 2992, with the following exceptions permitted:
8.3.1 Test at ambient temperatures between 50 and $110^{\circ} \mathrm{F}$ (10 and $43.5^{\circ} \mathrm{C}$) and report the temperature range experienced during the tests.

Note 12—Tests indicate no significant effects on long-term hydrostatic pressure within the ambient temperature range specified.
8.3.2 Determine the hydrostatic design basis for the glass fiber reinforcement in accordance with the method in Annex A1.

TABLE 10 Longitudinal Tensile Strength of Pipe Wall

Inch-Pound Units									
Nominal Diameter, in.	Longitudinal Tensile Strength, Ibf/in. of circumference								
	C50	C75	C100	C125	C150	C175	C200	C225	C250
8	580	580	580	580	580	580	580	580	580
10	580	580	580	580	580	580	580	653	726
12	580	580	580	580	644	644	697	784	871
14	580	580	580	626	751	751	813	914	1016
15	580	580	580	671	805	805	870	980	1089
16	580	580	580	716	859	859	929	1045	1161
18	580	600	608	759	911	911	972	1094	1215
20	580	580	675	844	1013	1013	1080	1215	1350
21	580	580	709	886	1063	1063	1134	1276	1418
24	580	608	810	1012	1215	1215	1296	1458	1620
27	580	683	911	1139	1367	1367	1458	1644	1823
30	580	714	952	1190	1428	1428	1499	1686	1873
33	640	785	1047	1309	1570	1570	1648	1854	2060
36	700	857	1142	1428	1713	1713	1798	2023	2248
39	780	928	1237	1547	1856	1856	1948	2192	2435
42	800	999	1332	1666	1998	1998	2098	2360	2622
45	860	999	1332	1666	1998	1998	2126	2392	2658
48	920	1045	1393	1742	2090	2090	2268	2552	2835
51	980	1110	1480	1850	2220	2220	2410	2711	3012
54	1040	1176	1567	1959	2351	2351	2552	2876	3189
60	1140	1306	1742	2177	2612	2612	2835	3189	3544
66	1260	1437	1916	2395	2873	2873	3119	3508	3898
72	1360	1567	2090	2612	3135	3135	3402	3827	4253
78	1480	1580	2106	2633	3159	3159	3475	3909	4344
84	1600	1701	2268	2835	3402	3402	3742	4210	4678
90	1720	1823	2430	3038	3645	3645	4010	4511	5012
96	1840	1944	2592	3240	3888	3888	4277	4811	5346
102	1940	2066	2754	3443	4131	4131	4544	5112	5680
108	2060	2191	2916	3645	4374	4374	4811	5413	6014
114	2180	2309	3078	3848	4617	4617	5079	5714	6348
120	2280	2430	3240	4050	4860	4860	5346	6014	6683
132	2520	2673	3564	4455	5340	5340	5881	6616	7351
144	2740	2918	3888	4860	5832	5832	6415	7217	8019
SI Units									
Nominal Diameter, in.	Longitudinal Tensile Strength, kN/m of circumference								
	C50	C75	C100	C125	C150	C175	C200	C225	C250
8	102	102	102	102	102	102	102	102	102
10	102	102	102	102	102	102	102	114	127
12	102	102	102	102	113	113	122	137	153
14	102	102	102	110	132	132	142	160	178
15	102	102	102	118	141	141	152	172	191
16	102	102	102	125	150	150	163	183	203
18	102	102	106	133	160	160	170	192	213
20	102	102	118	148	177	177	189	213	236
21	102	102	124	155	186	186	199	223	248
24	102	106	142	177	213	213	227	255	284
27	102	120	156	199	239	239	255	288	319
30	102	125	167	208	250	250	263	295	328
33	111	137	183	229	275	275	289	325	361
36	122	150	200	250	300	300	315	354	394
39	137	163	217	271	325	325	341	384	426
42	140	175	233	292	350	350	367	413	459
45	150	175	233	292	350	350	372	419	465
48	161	183	244	305	366	366	397	447	496
51	171	194	259	324	389	389	422	475	527
54	182	206	274	343	412	412	447	504	558
60	200	229	305	381	457	457	496	558	621
66	220	252	336	419	503	503	546	614	683
72	238	274	366	457	549	549	596	670	745
78	260	277	369	461	553	553	609	685	761
84	280	298	397	496	596	596	655	737	819
90	301	319	426	532	638	638	702	790	878
96	322	340	454	567	681	681	749	843	936
102	340	362	482	603	723	723	796	895	995
108	360	384	511	638	766	766	843	948	1053
114	382	404	539	674	809	809	889	1001	1112
120	400	426	567	709	851	851	936	1053	1170
132	440	468	624	780	935	935	1030	1159	1287
144	480	511	681	851	1021	1021	1123	1264	1404

8.3.3 Calculate the long-term hydrostatic pressure and categorize by class in accordance with Table 5. A1.6 explains how to calculate the long-term hydrostatic pressure.
8.4 Stiffness-Determine the pipe stiffness $(F / \Delta y)$ at 5% deflection for the specimen, using the apparatus and procedure of Test Method D 2412, with the following exceptions permitted:
8.4.1 Measure the wall thickness to the nearest 0.01 in . (0.25 mm).
8.4.2 Load the specimen to 5% deflection and record the load. Then load the specimen to deflection level A per Table 7 and examine the specimen for visible damage evidenced by surface cracks. Then load the specimen to deflection level B per Table 7 and examine for evidence of structural damage, as evidenced by interlaminar separation, separation of the liner or surface layer (if incorporated) from the structural wall, tensile failure of the glass fiber reinforcement, and fracture or buckling of the pipe wall. Calculate the pipe stiffness at 5% deflection.
8.4.3 For production testing, test only one specimen to determine the pipe stiffness.
8.4.4 The maximum specimen length shall be 12 in . (305 mm), or the length necessary to include stiffening ribs, if they are used, whichever is greater.

Note 13-As an alternative to determining the pipe stiffness using the apparatus and procedure of Test Method D 2412 the supplier may submit to the purchaser for approval a test method and test evaluation on Test Method D 790, accounting for the substitution of curved test specimens and measurement of stiffness at 5% deflection.
8.5 Hoop-Tensile Strength-Determine the hoop-tensile strength by Test Method D 2290, except that the sections on Apparatus and Test Specimens may be modified to suit the size of specimens to be tested, and the maximum load rate may not exceed $0.10 \mathrm{in} / \mathrm{min}$. Alternatively, Test Method D 638 may be employed. Specimen width may be increased for pipe wall thicknesses greater than 0.55 in . (14 mm). Means may be provided to minimize the bending moment imposed during the test. Cut three specimens from the test sample. Record the load to fail each specimen and determine the specimen width as close to the break as possible. Use the measured width and failure load to calculate the hoop-tensile strength.
8.5.1 Alternative Minimum Hoop-Tensile Strength Requirement-As an alternative, the minimum hoop-tensile strength values may be determined as follows:

$$
\begin{equation*}
F=\left(S_{i} / S_{r}\right)(P r) \tag{2}
\end{equation*}
$$

where:
$F=$ required minimum hoop tensile strength, lbf/in.,
$S_{i}=$ initial design hoop tensile stress, psi,
$S_{r}=$ hoop tensile stress at rated operating pressure, psi,
$P=$ rated operating pressure class, psi, and
$r=$ inside radius of pipe, in.
Note 14—A value of F less than $4 \operatorname{Pr}$ results in a lower factor of safety on short term loading than required by the values in Table 8.

The value for S_{i} should be established by considering the variations in glass reinforcement strength and manufacturing methods, but in any case should not be less than the 95% lower confidence value on stress at 0.1 h , as determined by the manufacturer's testing carried out in accordance with 6.4. The value for S_{r} should be established from the manufacturer's hydrostatic design basis.

8.6 Longitudinal Strength:

8.6.1 Beam Strength—Place a $20-\mathrm{ft}(6.1-\mathrm{m})$ nominal length of pipe on saddles at each end. Hold the ends of the pipe round during the test. Apply beam load for the diameter of pipe shown in Table 9 simultaneously to the pipe through two saddles located at the third points of the pipe (see Fig. 2). The loads shall be maintained for not less than 10 min with no evidence of failure. The testing apparatus shall be designed to minimize stress concentrations at the loading points.
8.6.2 Longitudinal Tensile Strength—Determine in accordance with Test Method D 638, except the provision for maximum thickness shall not apply.
8.6.3 Longitudinal Compressive Strength-Determine in accordance with Test Method D 695.

9. Packaging and Package Marking

9.1 Mark each length of pipe that meets or is part of a lot that meets the requirements of this specification at least once in letters not less than $1 / 2 \mathrm{in}$. (12 mm) in height and of bold-type style in a color and type that remains legible under normal handling and installation procedures. The marking shall include the nominal pipe size, manufacturer's name or trademark, this ASTM specification number: D 3517, type, liner, grade, class, and stiffness in accordance with the designation code in 4.2.
9.2 Prepare pipe for commercial shipment in such a way as to ensure acceptance by common or other carriers.
9.3 All packing, packaging, and marking provisions of Practice D 3892 shall apply to this specification.

ANNEX

(Mandatory Information)

A1. ALTERNATIVE HYDROSTATIC DESIGN METHOD

A1.1 The following symbols are used:

$$
P_{1}=2\left(t_{h} \sin \theta\right)(\mathrm{HDB}) / D
$$

The pipe is categorized in accordance with Table A1.1.
Note A1.2-The calculated result P_{1} may be multiplied by the factor 6.895 to convert from psig to kPa .

A1.6 Pressure Class Rating-The classes shown in Table A1.1 are based on the intended working pressure in psig for commonly encountered conditions of water service. The purchaser should determine the class of pipe most suitable to the installation and operating conditions that will exist on the project on which the pipe is to be used by multiplying the values of P_{1} from Table A1.1 by a service (design) factor selected for the application on the basis of two general groups of conditions. The first group considers the manufacturing and testing variables, specifically normal variations in the material, manufacture, dimensions, good handling techniques, and in the evaluation procedures in this method. The second group considers the application or use, specifically installation, environment, temperature, hazard involved, life expectancy desired, and the degree of reliability selected.

Note A1.3-It is not the intent of this standard to give service (design) factors. The service (design) factor should be selected by the design engineer after evaluating fully the service conditions and the engineering properties of the specific plastic pipe material under consideration. Recommended service (design) factors will not be developed or issued by ASTM.

TABLE A1.1 Long-Term Hydrostatic Pressure Categories

Class	Minimum Calculated Values of Long-Term Hydrostatic Pressure, P_{1} gage, psi (kPa)
C50	$90(621)$
C75	$185(931)$
C100	$180(1241)$
C125	$225(1551)$
C150	$270(1862)$
C200	$315(2172)$
C225	$360(2482)$
C250	$405(2792)$

APPENDIXES

(Nonmandatory Information)

X1. INSTALLATION

X1.1 These specifications are material performance and purchase specifications only and do not include requirements for engineering design, pressure surges, bedding, backfill or the relationship between earth cover load, and the strength of the pipe. However, experience has shown that successful performance of this product depends upon the proper type of bedding
and backfill, pipe characteristics, and care in the field construction work. The purchaser of the fiberglass pressure pipe specified herein is cautioned that he must properly correlate the field requirements with the pipe requirements and provide adequate inspection at the job site.

X2. RECOMMENDED METHODS FOR DETERMINING GLASS CONTENT

X2.1 Determine glass content as follows:
X2.1.1 By ignition loss analysis in accordance with Test Method D 2584 or ISO 1172.

X2.1.2 As a process control, by weight of the glass fiber reinforcement applied by machine into the pipe structure.

[^3][^4]This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).

[^0]: ${ }^{1}$ This specification is under the jurisdiction of ASTM Committee D20 on Plastics and is the direct responsibility of Subcommittee D20.23 on Reinforced Plastic Piping Systems and Chemical Equipment.

 Current edition approved April 1, 2004. Published April 2004. Originally approved in 1976. Last previous edition approved 2003 as D 3517-03.
 ${ }^{2}$ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service @astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

[^1]: ${ }^{3}$ Available from American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036.
 ${ }^{4}$ Available from the National Sanitation Foundation, P.O. Box 1468, Ann Arbor, MI 48106.

[^2]: Note-The values in this table are equal to $2 P D$, where P is the pressure class in psi and D is the nominal diameter in inches.

[^3]: ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

[^4]: This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

